Gontc manpage

August 12, 2002

1 NAME

gontc - compile and link Gont les

2 SYNOPSIS

gontc [OPTIONS] les...

3 DESCRIPTION

gontc is used to compile source Gont intro binaries, and then linking them together. It uses
concept of module in managing compilation. Module consists of interface (in *.gi source le), and
implementation (in *.g source le). In order to compile implementation compiler has to be able to
nd compiled interface for module being compiled, and all modules it depends on.
Typical compilation involves running, for each module in project, gontc -c module.gi to
compile interfaces, then gontc -c module.g to compile implementation, and nally gontc -o
prog modl.go mod2.go...

4 OPTIONS

gontc recognizes following options:
-C
just compile, don’t try to link

-save-temps

save temporary les. In normal circumstances temporary *.ksi les produced during compi-
lation, and auxiliary linker les are removed.

-ksi OPT

pass option to Ksi compiler. Example usage might be: -ksi -fomit-frame-pointer
-ksicc PROG

set Ksi compiler, for example -ksicc ppc-pld-linux-cc

-00

don’t optimize. Same as -ksi -OO0.

-01
optimize. Same as -ksi -O1.

-02

optimize more. Same as -ksi -O2.

-03

optimize even more. Same as -ksi -O3.
-Werror

treat warnings as fatal.

-g

produce debug info. Same as -ksi -g.
-S

just generate *.ksi le and stop.

-0 OUTFILE

set linker output le name. This doesn’t work with -c

-B PREFIX

override pre x. Pre x is directory in which gontc looks for standard libraries, and from
which con guration is read.

-V
be verbose, display what is being done.

-dump MODULE
dump named module and exit.

-gia

operate in make interface archive mode. Usage is then: gontc -gia archive.gia modl.gio...
_ga

operate in make compiled implementation archive mode. Usage is then: gontc -ga archive.ga
mod1.go...

-ugly

generate ugly Ksi code. This might be somewhat faster.

-pretty

generate pretty Ksi code. Slower, useful, when you have to look at the generated code.

-L DIR

add directory to library search path. This a ects only looking for *.go and *.ga les. Use
-ksi -L is you want to change path for *.a les.

-1 DIR

add directory to interface search path. gontc looks for compiled interfaces (*.gio) there. You
can also specify *.gia archive instead of directory.

-link-aux NAME
set name of auxiliary Ksi le generated during link (‘gont-link-aux.ksi’ by default).

5

-link-init NAME

set name of generated initialization function (‘gont_init’ by default).
-link- ni NAME

set name of generated nalization function (‘gont_ ni’ by default).
-link-main NAME

set name of generated toplevel function (‘main’ by default).
-just-make-aux

just make auxiliary linking le and stop.

-only-needed LIBRARY
add only needed les from named library. This is default behavior for standard libraries.

-lib LIBRARY
same as -only-needed

-greedy LIBRARY
add all les from named library.

-ciface

this option causes gontc to output C header les for named modules, i.e. all subsequent
non-option arguments are treated as names of modules to dump. Example usage might be:
gontc -ciface Foobar > foobar.h.

-help
display list of options.

{help
same as -help

FILES

gontc recognizes type of input le based on extension. Following rules apply:

*.g Gont sources

are compiled into *.ksi and *.go. *.ksi le is passed to Ksi compiler, that produces *.0 object
le with machine code.

*.gi Gont interface sources

are compiled into *.gio.

*.go Gont compiled implementation le

are used to resolve linking dependencies. You should never supply *.0 le resulting from *.g
compilation for linking. Always use *.go le. Otherwise linking error will occur (unresolved
reference to Module$$$__go_ le__linked__$ or something similar).

*.gio Gont compiled interface les

gontc doesn’t know what to do with this kind of les. l.e. they cannot be passed as command
line options. They are open implicitly during compilation. -1 option can be used to help
gontc nd this kind of les.

6

* ksi Ksi source les
are passed to Ksi compiler. It should produce *.0 les from them.

*.0 Object les with machine code

are just passed to linker. Never use *.0 les, produced from *.g, directly. Always use *.go
les.

*.a Libraries of object les with machine code

are just passed to linker. Never use *.a les, produced from linking results of *.g compilation

together, directly. Always use *.ga les.

*.ga Archives of Gont implementation les

are unpacked to memory, and then treated as if each of *.go les inside was speci ed in

command line.

*.gia Archives of Gont interface les

similarly to *.gio les, gontc doesn’t know what to do with these beasts. They can however
be passed as arguments to -1 option, instead of directories to make gontc look in archive
when looking for interfaces.

AUTHOR

This manpage was written by Michal Moskal <malekith/at/pld-linux.org>.

