
Gont Manual

August 12, 2002

$Id: manual.tex,v 1.3 2002/05/27 15:08:38 malekith Exp $

Contents

I Basics 2

1 Intro 2

1.1 Error tolerance . 2

1.2 Typographic conventions . 2

1.3 Other notes . 2

2 Hello world 2

3 Lexical conventions 3

4 Control structures 3

4.1 Empty instruction . 3

4.2 Conditions . 4

4.3 Dangling else . 4

4.4 Labeled loops . 4

II Types 4

5 Basic Types 4

5.1 Pointers . 5

6 Structures 5

6.1 What’s opt struct? . 6

6.2 Assignment to structures . 6

6.3 Structure initializers . 6

7 Polimorphism 6

7.1 Polimorphism vs templates . 7

8 Functional values 7

8.1 Example . 8

8.2 More examples . 8

8.3 MLish variations about de�ning functions . 9

8.4 Omitting return keyword . 9

8.5 Closures . 10

1

9 Tuples 10

10 Unions 10

III Pattern matching 11

11 Pattern matching basic types 11

12 Pattern matching tuples 11

12.1 Changing top-level pattern . 12

13 Pattern matching unions 12

13.1 What happen to C’s switch and enums?!? . 13

13.2 Fall through disclaimer . 14

14 Pattern matching structures 14

15 Exhaustive matching 15

16 let statement 15

IV Other stu� 16

17 Module system 16

17.1 Interface . 16

17.2 Implementation . 17

17.3 Hey, where did #include go? . 18

17.4 Std module . 19

18 Initialization and �nalization of modules 19

18.1 Greedy linking . 19

18.2 Mutually recursive modules . 20

19 Exceptions 20

20 Function prototypes 21

V Appendixes 21

21 Intro 21

22 Type system 21

22.1 Basic types . 22

22.2 Function type . 22

22.3 Tuples . 22

22.4 Structures . 22

22.5 Unions (datatypes) . 22

22.6 Named types . 22

22.7 Foreword . 23

23 Wish list 23

2

Part I

Basics

1 Intro

Gont is programming language similar to C in some aspects, to Java in some other, and to ML in

remaining.

This document is meant to give a brief introduction into Gont for someone with basic C

experience.

1.1 Error tolerance

Gont always tries to ensure, you won’t do anything harmful. However, as it isn’t very bright,

it might be sometimes annoying. Generally, it is something at the level of gcc -Wall -Werror,

sometimes more, sometimes less.

1.2 Typographic conventions

Keywords are written like this.

Program examples and terminal output, is written using:

monospaced font, indented in separate line.

1.3 Other notes

Words foo, bar, baz and qux used in examples are metasyntactic variables, they mean \any name".

2 Hello world

What can be �rst program we will write? There is only one choice... :) So startup your favorite

editor and create �le named hello.g with the following contents:

section init

{

print_string("Hello world!\n");

}

Gont requires each module to have an interface. For example:

[malekith@roke gont-tut]$ ls

hello.g

[malekith@roke gont-tut]$ gontc hello.g

hello.g:0:1: cannot find module interface for Hello: file not found

[malekith@roke gont-tut]$

Interface should be in �le under the same name as implementation �le, but with .gi su�x.

We will talk about modules more in Section 17 below. For now, we don’t need anything special in

interface, so we create it empty:

3

[malekith@roke gont-tut]$ echo > hello.gi

[malekith@roke gont-tut]$ gontc -c hello.gi

[malekith@roke gont-tut]$ gontc hello.g

[malekith@roke gont-tut]$./a.out

Hello world!

[malekith@roke gont-tut]$

It works! :)

3 Lexical conventions

Following example is list of valid Gont tokens (although without any sense :)

// comment

/* /* Unlike in C, */ comments can be nested. */

123 // decimal number

0x12a // hexadecimal number

0o666 // octal number

0666 // *decimal* number

0b0110 // binary number

"string\nwith newline"

ident_1

___ident123_4

Code is not passed through any preprocessor by default.

Following strings cannot be used as identi�ers, because they are keywords:

bool else finally in null section true void

break exception float int open skip try while

case export_as for is opt_struct string type with

continue extern_c fun let raise struct typedef

do false if local return switch union

4 Control structures

Basic control structures include while, do ... while and for loops, if conditionals, and break

and continue jump statements.

Gont control structures are in few places more restricted then these found in C. This is to

satisfy safety paradigm. You might �nd this annoying, upon �rst reading.

4.1 Empty instruction

There is no empty instruction (written as ‘;’ in C). skip keyword is introduced instead. For

example:

C:

while (f(b++));

Gont:

while (f(b++))

skip;

4

4.2 Conditions

Type of condition in control structures has to be bool. Therefore, C code:

int i = 10;

while (i--)

f();

needs to be written as:

int i = 10;

while (i-- != 0)

f();

4.3 Dangling else

In C else is associated with nearest else-free if. The grammar of C is said to be ambiguous

because of this. This can be real problem sometimes, following code, due the indentation used, is

misleading:

if (foo)

if (bar)

baz();

else

qux();

In Gont one needs to use f g when putting one if into another.

4.4 Labeled loops

In Gont, similarly to Ada or Perl, loops can be given names, in order to later on tell break and

continue which exactly loop to break. This looks as:

foo: while (cond) {

bar: for (;;) {

if (c1)

break foo; // break outer loop

else

continue bar; // continue inner loop

for (;;) {

if (c2)

break; // break enclosing loop

}

}

}

Part II

Types

5 Basic Types

Gont includes following basic types:

5

� int

signed integers, 32 or 64 bit wide, depending on architecture

� float

IEEE double precision (64 bit) oating point numbers

� string

character strings

� bool

booleans, true and false are the only possible values

� void

empty type, or more accurately, type of which just one value lives. While it cannot be spelled

in current version of Gont, it is implicitly created with return; statement.

5.1 Pointers

There is no explicit notation of pointers. Structures and unions are always treated as pointers (as

in Java). Strings are built in type. Pointers to functions are discussed in Section 8 below.

6 Structures

They are de�ned with struct and opt struct keywords.

struct s {

int a;

string b;

}

is roughly equivalent of C’s:

typedef struct {

int a;

char *b;

} *s;

So, name s can be used (only) without any struct or opt struct. For example, this piece of

code uses structure de�nition above:

string f(s foo)

{

foo.a = 5;

return foo.b;

}

You should note, that structures are passed by pointer (or by reference if you prefer C++

naming style), therefore changes made to struct inside function are reected in state of it on the

caller side, hence:

s x;

...

x.a = 10;

f(x);

// x.a is 5 here

Fields of structure can be accessed with ‘.’ operator, there is no ‘->’ operator.

6

6.1 What’s opt struct?

struct value is always valid, i.e. it has to be initialized with object instance, before it is used, and

you cannot assign null pointer to it.

opt struct can be null. You still have to initialize it before, it is used, but you can do it with

null keyword. You can also assign null to it later on.

This involves runtime check on each access to opt struct value. When you try to access

opt struct value, that is null, Null_access exception is raised. This behavior can be controlled

with compiler switch.

6.2 Assignment to structures

If you do:

void f(s1 x)

{

s1 y;

y = x;

y.fld = 0; // here you also modify x.fld

}

In general assigning values other then int’s, bool’s and float’s copies pointer, not content,

i.e. makes an alias of an object.

6.3 Structure initializers

When initializing structures one has to spell �eld name along with expression initializing it. For

example:

struct foo {

int bar;

string baz;

}

void f()

{

foo qux = ({ bar = 1, baz = "quxx" });

}

(f ... g) is also normal expression, for instance:

void f()

{

foo(({ bar = 1, baz = "qux" }));

}

7 Polimorphism

This is probably the neatest thing in Gont. Structures, as well as functions can be parameterized

over types. Thus it is possible to write generic types and functions, like list of anything, or stack

of anything.

For example to de�ne list of anything you write:

7

opt_struct <’a>list {

’a data;

<’a>list next;

}

’a is alpha. It is type variable, it stands for any type (similarly ’b is beta, but I really don’t

know what ’foo is... :-) <’a>list is read as \list of alphas" { list of data of any type. <int>list

is \list of integers".

Then you use it as:

<int>list l; // list of ints

<<int>list>list ll; // list of lists of ints

<string>list s; // list of strings

Now, when we have our polimorphic list, we note, that for example length() function doesn’t

need to know type of elements stored in the list:

int length(<’a>list l)

{

int n;

for (n = 0; l != null; l = l.next)

n++;

return n;

}

Gont standard library includes modules with ready-to-use generic datatypes.

7.1 Polimorphism vs templates

At the abstract level polimorphism is similar to templates in C++. However, in Gont, code for

given polimorphic function is generated just once. Additionally polimorphism becomes really funny

in conjunction with functional values. We’ll discuss it later.

You might have seen generic datatypes implementations in C. They most often use void*

pointers as placeholders for user data. Gont does essentially the same. However it ensures, this

void* is always assigned and read from variables of the same type.

If you are familiar with C++ you know, that following C++ template instance is not valid:

List<List<int>> l;

whereas in Gont, following is valid:

<<int>list>list l;

‘<<’ and ‘>>’ are lexed as bitwise shift operators in both Gont and C++. In C++ one have to

write ‘< <’, but in Gont parser handles this case specially, just for convenience.

8 Functional values

Functions are �rst class citizens. This functional programming slogan means that you can

write a function, that takes function as argument and returns function. As this might sound a bit

magic, let’s make it look like real voodoo: :)

8

8.1 Example

opt_struct <’a>list {

’a data;

<’a>list next;

}

(vois (<’a>list)) mapper((void (’a)) f)

{

void for_all(<’a>list lst)

{

while (lst != null) {

f(lst.data);

lst = lst.next;

}

}

return for_all;

}

This function takes function f operating on items, and returns function that applies f to all

elements of list.

Ok, now some explanations. The key thing to note is functional type notation. *(void (’a)) is

function that takes single argument, of any type, and returns no value. Similarly *(string (int, <’a>list))

is function, that takes int and <’a>list parameters, and returns string.

8.2 More examples

// Call passed function f on each element of the list l

// starting from head.

void iter(*(void (’a)) f, <’a>list l)

{

while (l != null) {

f(l);

l = l.next;

}

}

// Call function f on each element of the list l,

// collect results as a list (of possibly different type)

// and return it.

<’b>list map(*(’b (’a)) f, <’a>list l)

{

<’b>list o = null;

while (l != null) {

o = {data = f(l.data), next = o};

l = l.next;

}

return o;

}

Following functions are de�ned in Gont standard library:

9

string itoa(int);

void print_string(string);

We can use them with our iter and map:

<int>list il = ({ data = 1, next = ({ data = 2, next = null })});

<string>list sl = map(itoa, il);

iter(print_string, sl);

This will print \12".

8.3 MLish variations about de�ning functions

Nested function de�nitions (for example the for_all function) are shortcut to de�ning functional

variables and initializing them, so our example could look as:

(void (<’a>list)) mapper((void (int)) f)

{

*(void (<’a>list)) for_all;

for_all = fun void (<’a>list lst) {

while (lst != null) {

f(lst.data);

lst = lst.next;

}

};

return for_all;

}

Or even:

(void (<’a>list)) mapper((void (int)) f)

{

return fun void (<’a>list lst) {

while (lst != null) {

f(lst.data);

lst = lst.next;

}

};

}

fun is keyword. After fun comes return type, then list of parameters, along with their types,

just like in regular function de�nition in C. Then comes body of function { either block or expression

in parenthesis.

8.4 Omitting return keyword

Special extension is supported, useful when dealing with functional values. Whenever function

body (sequence of statements within { }) should appear, single expression within () can be

supplied. It is passed to return statement, which is only statement in function body. So:

fun int (int a, int b) (a + b)

is equivalent of:

fun int (int a, int b) { return a + b; }

10

8.5 Closures

This section is for curious folks, who always want to know, how things work.

Local functions needs to remember variables from enclosing function, at the time they were

de�ned. For example for_all function from our example needs f parameter of mapper. However

for_all cannot rely on being called when mapper activation record is still on the stack.

Therefore local function are stored as pair of pointer to function and pointer to special closure

structure. Closure of a function holds all variables de�ned in it, that might need to be accessed by

local functions. Local functions, in generated code, are always passed closure to enclosing function

as �rst argument.

9 Tuples

Tuple is datatype, that consists of two or more components, which are anonymous. Tuples are

de�ned as:

*[int, int] t1; // pair of integers

*[int, string, bool] t2;

*[ctx, ty] t3;

And used as:

t1 = [1, 2];

int a, b;

[a, b] = t;

// swap

[a, b] = [b, a];

t3 = [1, "hello", true];

// true and false are keywords

return [1, "one"];

They might come in handy, when you need to return more then one value from function.

More on tuples in Section 12 below.

10 Unions

Union are more closely related to ML’s datatypes then to C’s unions. The basic di�erence is that

Gont compiler remembers which member is currently stored in union.

Unions are de�ned as:

union exp {

int Const;

void Var;

*[exp, exp] Add;

*[exp, exp] Sub;

*[exp, exp] Mul;

*[exp, exp] Div;

}

This union can be later on used for processing symbolic expressions. For example:

11

// f = (x / 10) + x

exp f = Add[Div[Var, Const[10]], Var];

exp g = Var; // both forms

exp h = Var[]; // are correct

You can access union components only using pattern matching (there is no ‘.’ notation).

Pattern matching is discussed in Section 13.

Part III

Pattern matching

11 Pattern matching basic types

Pattern matching is technique used to decomposite complex datatypes and made decisions based

on their content.

In Gont one might pattern-match ints, strings, bools, tuples and unions. Pattern matching ints

and bools looks like switch in plain C:

string my_itoa(int i)

{

switch (i) {

case 1: return "one";

case 2: return "two";

case _: return "infinity"; // it’s set rather low...

}

}

case _: is Gont way to say default:. It is called match-all pattern.

As a consequence of string being built in, basic type, strings can also be pattern matched:

int my_atoi(string s)

{

// note lack of () around s, they can be omitted

switch s {

case "one": return 1;

case "two": return 2;

case _: return 3;

}

}

As you probably guessed, bool’s are pattern matched with true and false.

12 Pattern matching tuples

Patterns can include variables. case clause assigns values found in given place in pattern to them.

For example, following function return �rst element of tuple passed to it:

int first(*[int, int] t)

{

switch t {

12

case [x, y]: return x;

}

}

We can mix variables and constants (often called type constructors in this context) together:

int special_sym(int a, int b)

{

switch [a, b] {

case [_, -1]:

return -1;

case [-1, x]:

return x;

case [x, y]:

return x + y;

}

}

As said before, _" is match-all pattern. It matches any value. One might note, that x also

matches any value. However, it is matter of good style, to use _ when you are not going to use

value matched.

Important thing to note about the example above, is that we construct tuple, just to pattern-

match it. The same result could be achieved with few if’s, but pattern matching is often more

readable (at least when one get used to it :-)

Variables inside patterns are l-values. It means they can be used on the left hand side of

assignment operator. In fact, there would be no way of changing content of tuple without it :)

For example, following function exchanges sides of pair passed as argument:

void swap_pair(*[’a, ’a] p)

{

switch p {

case [x, y];

’a tmp = x;

x = y;

y = x;

}

}

12.1 Changing top-level pattern

Consider following code:

switch 10 {

case x:

x = 5; // what to change?

}

Because of this, it is not allowed to change top-level pattern variable.

13 Pattern matching unions

Similarly as with tuples, pattern matching is the only way to get to the value of union. Union

patterns consists of �eld name followed by nothing, [], pattern enclosed in [] or tuple pattern.

This mimics ways, one can construct union value.

13

Following example utilizes pattern matching in simple symbolic expression computations envi-

ronment.

union exp {

int Const;

void Var;

*[exp, exp] Add;

*[exp, exp] Sub;

*[exp, exp] Mul;

*[exp, exp] Div;

}

int compute(exp e, int v)

{

switch e {

case Const[x] : return x;

case Var : return v;

case Add[e1, e2] : return compute(e1, v) + compute(e2, v);

case Mul[e1, e2] : return compute(e1, v) * compute(e2, v);

case Div[e1, e2] : return compute(e1, v) / compute(e2, v);

case Sub[e1, e2] : return compute(e1, v) - compute(e2, v);

}

}

exp diff(exp e)

{

switch e {

case Const[_] : return Const[0];

// both Var and Var[] are legal

case Var[] : return Const[1];

case Add[e1, e2] : return Add[diff(e1), diff(e2)];

case Sub[e1, e2] : return Sub[diff(e1), diff(e2)];

case Div[e1, e2] :

exp up = Sub[Mul[diff(e1), e2], Mul[e1, diff(e2])];

exp down = Mul[e2, e2];

return Div[up, down];

case Mul[e1, e2] :

return Add[Mul[diff(e1), e2], Mul[e1, diff(e2])];

}

}

13.1 What happen to C’s switch and enums?!?

Hmm... they are still there:

union color {

void Red;

void Green;

void Blue;

}

This is roughly equivalent of C’s:

14

typedef enum {

Red,

Green,

Blue

} color

Then we do:

string color_name(color c)

{

string r;

switch (c) {

case Red:

r = "red";

case Green:

r = "green";

// Blue[] is also legal

case Blue:

r = "blue";

}

return r;

}

This looks almost like C, modulo one little issue. There is no fall through. Each case

is separate branch or program execution. One doesn’t need to write break statements. In fact,

break would break loop enclosing switch, if there is any!

13.2 Fall through disclaimer

If you don’t like the no-fall-through clause, please �rst consider following snippet of code:

switch e {

case Mult[e1, e2]:

// here we do fall through

case Const[x]:

// hmm... what does x mean, if we fall through from Mult[...]?

// and what can e1 and e2 mean here, if we didn’t fall

// through?

}

Because case can bind new variables, it has to introduce new scope. So fall through is impos-

sible.

14 Pattern matching structures

This isn’t yet implemented, proposed syntax is something like:

switch e {

case {next = {next = null}, data = a}:

return a;

case {next = null, data = a}:

15

return a + 1;

case _:

return 0;

}

15 Exhaustive matching

In previous examples we have checked for each possibility, in our switch statements, but we don’t

have to:

string var_name1(exp e)

{

switch e {

case Var[x]: return x;

// matches any x

case x: return "not variable";

}

}

string var_name2(exp e)

{

switch e {

case Var[x]: return x;

}

}

var_name2 would raise Match_failure exception if any pattern didn’t match.

However it is matter of good style, to always check each possibility. Compiler will warn you,

if you fail to do it. This warning comes in very handy in some situations. For example, suppose

you have union similar to exp (from example above) in your symbolic algebra package. Now, you

want to add power operator. So you add:

*[exp, int] Pow;

to exp de�nition. Now you have to change each pattern matching of exp to check for power

function. gontc will help you, complaining about non-exhaustive pattern matching. I, personally,

found similar features in Caml compiler very useful during Gont development. Whenever I want

to add new feature to Gont, I add it to syntax tree de�nition and �x compiler, until there are no

warnings about non-exhaustive pattern matching.

16 let statement

let statement allows limited form of pattern matching, with terser syntax, for example patterns

can be used to decomposite tuples, like this:

*[int, int] t = [1, 2];

...

switch t {

case [i1, i2]: return i1 + i2;

}

This can be abbreviated to:

16

*[int, int] t = [1, 2];

...

let [i1, i2] = t in { return i1 + i2; }

There can be more then one assignment, like this:

let [t1, t1] = t,

[s1, s2] = s {

// ...

}

The let assignment and binding names with case just creates new name for an object. Speci�cly

it means that assigning values to names bound with let/case changes object itself. Example:

*[int, string] t = [1, "one"];

switch t {

case [i, _]: i = 2;

}

let [_, s] = t in { s = "two"; }

// here t == [2, "two"]

One can note that you can also decomposite t with:

string s;

int i;

[i, s] = t;

// here i = 2, s = "two"

// however:

i = 3; s = "three";

// here i = 3, s = "three", but t == [2, "two"]

Part IV

Other stu�

17 Module system

Modules provide way of separate compilation along with possibility of avoiding namespace conicts.

Current module system is based on ideas from OCaml. However, compared to OCaml, it is very

limited, we only support one level of modules, there are no functors and so on.

17.1 Interface

Interface part of module Foo goes to �le foo.gi. This is similar to .h header in C. It contains

function prototypes, types de�nitions, variables declarations and similar stu�.

The main purpose of interface �le is to hide implementation details.

Hiding information about de�ned functions and variables is easy { you simply do not provide

prototype or declaration, and no one, outside foo.g, will be able to call this function, or reference

variable.

17

You can also hide information about types, by writing type bar in foo.gi, you say: \I will

de�ne type named bar in foo.g, but users of this module doesn’t need to know what exactly this

type is". Of course if there is no need to even say, that bar is de�ned, you can omit type bar,

and just de�ne it in foo.g.

It is also possible to disclosure types in interface. It is done exactly the same way as in

implementation �le.

Now some example:

// interface of Foo

// reset module to initial state

void reset();

// don’t disclosure actual type of file

type file;

// but provide definition for type used as interface

union open_flag {

void Open_rdonly;

void Open_rdwr;

void Open_wronly;

int Open_to_append; // int argument specifies at which point

// to start appending (I know it’s

// stupid :-)

}

file open(open_flag flag);

// global variable

int open_files_cnt;

17.2 Implementation

Implementation part of module Foo goes to �le foo.g. Actual function, variable and type de�ni-

tions are here.

All symbols de�ned in Foo are pre�xed with Foo::. This allows having function (or type, or

variable) named foo in both Bar and Baz modules.

Now we might look at some more realistic example:

File mylist.gi:

// this is to output information,

// that we implement type ‘t’, but not to

// disclosure what it is.

type <’a>t;

// return first element (head) of the list

’a hd(<’a>t x);

// return all but first element (tail) of the list

<’a>t tl(<’a>t x);

// create new empty list

<’a>t create();

18

// apply f to all elements of l, return list of results

<’b>t map(*(’b (’a)) f, <’a>t l);

// call f on all elements of the list

void iter(*(void (’a)) f, <’a>t l);

File mylist.g:

// this is local datatype.

opt_struct <’a>t {

’a data;

<’a>opt_struct next;

}

// this will be exported out (‘public’)

’a hd(<’a>t x) { return x.data; }

<’a>t tl(<’a>t x) { return x.next; }

// this is local, can’t be called from outside the module

void helper(<’a>t x) { ... }

// and more publics

<’a>t create() { return null; }

// we already wrote these

<’b>t map(*(’b (’a)) f, <’a>t l) { ... }

void iter(*(void (’a)) f, <’a>t l) { ... }

// ...

Then if you want to use the module, it can be done with :: notation, like this:

<int>Mylist::t l = Mylist::create();

...

int k = Mylist::hd(l);

In case of some modules it might be useful to open them, i.e. import all symbols from module

into current namespace, so you no longer have to use :: notation (but you still can, it is often

suggested for readability):

open Mylist;

...

<int>Mylist::t l = Mylist::create();

...

int k = hd(l);

// it might be hard to tell what <int>t refers to here,

// so using Mylist::t is recommended

<int>t rest = tl(l);

17.3 Hey, where did #include go?

In Gont, at present, there is no #include. Also you cannot prototype functions from other modules

in implementation �les. Modules are more abstract, higher level mechanism, that should be used

instead. It is much harder to make a mistake when using modules, and it’s not all that hard, once

you used to them.

#include (and #define for that matter) might be implemented in some unspeci�ed future, if

there are some good reasons to. However #include won’t be used for modularization.

19

17.4 Std module

Std module is open at the beginning of each compilation unit. It includes few primitive functions,

exceptions and types.

18 Initialization and �nalization of modules

You often need to initialize module before it is used. For example to global variables often needs

some initial value that is not constant and so on. Gont uses section declaration to deal with

such cases. section is followed by name of section. You can use section several times. Bodies of

section under the same name in one module are concatenated, in order, in which they are given

in source code.

Currently just two sections are provided:

� init

Code in init section is executed at the beginning of the program.

Order in which init sections of modules are executed is speci�ed in command line during

link. However Gont linker ensures you do not use any module, that has init or fini section

before it is initialized.

� fini

Code in fini section is executed just before leaving the program.

Order of execution of fini sections is order of init reversed.

The Std::at_exit function registers given function to be run before program exits. However

content of all fini sections are executed after all functions registered with Std::at_exit has

completed.

There is no main function in Gont program. One uses section init for this purpose.

Following example:

section init { print_string("1 "); }

section fini { print_string("-1 "); }

section fini { print_string("-2\n"); }

void bye()

{

print_string("bye ");

}

void main()

{

at_exit(bye);

print_string("main ");

}

section init { print_string("2 "); main(); }

prints: 1 2 main bye -1 -2.

18.1 Greedy linking

You may tell gontc to link given library in greedy mode. It means that all �les from this library

are linked, and their init and fini sections are executed.

You don’t want to do this with regular libraries, like Gont standard library, because you do not

need all �les from them. gontc is wise enough to tell that you need, let’s say List module, if you

used it in your program.

20

However greedy linking might come in handy, modules are not explicitly referenced from main

program, but their init sections registers them somewhat with the main program.

18.2 Mutually recursive modules

Unlike in Caml, it is possible to have two modules that reference each other. However one of them

cannot have init nor fini section. If they have, they cannot be mutually recursive (reason: what

should be the order of initialization?)

19 Exceptions

Exceptions are sophisticated form of jump instruction. They are used to inform about unusual

situation in a program, in order to transfer control to block, that can handle it. They can be

thought of as member of a huge union:

union exn {

// system defined

void Std::Null_access;

void Std::Match_failure;

void Std::Not_found;

void Std::End_of_file;

string Std::Invalid_argument;

string Std::Failure;

void Std::Exit;

// user defined, Compiler is name of user module

string Compiler::Syntax_error;

void Compiler::ICE;

}

New members are added with exception keyword, for example one can say in compiler.g or

compiler.gi :

exception string Syntax_error;

exception void ICE;

In order to signal unusual situation, you use raise keyword:

raise Syntax_error["parse error"];

raise ICE;

raise Compiler::ICE[];

At the place, where you know how to handle it, you use try:

try {

open_file();

...

parse();

...

} with {

case Syntax_error[s]:

print_msg(s);

case ICE:

21

print_msg("Internal Compiler Error");

} finally {

close_file();

}

Statements in try { ... } are executed. If exception occurs during this process control is

transfered to with { ... } part. Exception is then pattern matched against case clauses there.

If it didn’t match anything, it is raised again (to be possibly caught by another enclosing try

block).

No matter how control leaves try block, statements in finally { ... } are executed upon

exit. This can be used to release some allocated resources (for example to close a �le, like in our

example).

One can omit with { ... } part and use only try { ... } finally { ... }, or omit finally { ... }

and use only try { ... } with { ... }.

20 Function prototypes

While you cannot prototype functions from other modules (module interfaces are used for this), it

is sometimes needed to prototype functions from current �le, before they are de�ned. You can do

that with local keyword, like this:

local void foo();

void bar()

{

foo();

}

void foo()

{

bar();

}

And yes, this example loops forever :)

[[this doesn’t work yet]]

Part V

Appendixes

21 Intro

This part gives some more formal (but still far from completely formal, working on it :) descriptions

of some aspects of Gont language, and documents some other stu� that didn’t �t anywhere :)

22 Type system

t, t1, t2, ... are type expressions. v1, v2, ... are type variables (’a, ’b, ’foo, ...).

22

22.1 Basic types

int, float, string, bool, void, written as is.

22.2 Function type

Function type is written as follows:

*(t (t1, t2, ..., tn))

where n >= 0. One might note that this is somewhat di�erent from ML where all functions

take just one parameter (which can be tuple or another function, but this is not the point). This

is closer to C’s function notation.

22.3 Tuples

*[t1, t2, ..., tn]

where n >= 2.

22.4 Structures

struct <v1, v2, ..., vn> NAME {

t1 f1;

t2 f2;

...

tm fm;

}

Structures that can be invalid (i.e. null):

opt_struct <v1, v2, ..., vn> NAME {

t1 f1;

t2 f2;

...

tm fm;

}

22.5 Unions (datatypes)

union <v1, v2, ..., vn> NAME {

t1 f1;

t2 f2;

...

tm fm;

}

where n >= 0, m >= 1. If n == 0, <> can be omitted. � are �eld names.

22.6 Named types

Structures and unions can be later on referred with:

<t1, t2, ..., tn> NAME

where n >= 0. If n == 0, <> can be omitted.

23

22.7 Foreword

* in front of tuple and function types is (crude) way to convince ocamlyacc (Bison has the same

problem, though), that there are none reduce/reduce conicts in grammar. I guess there aren’t

even without ‘*’, but tell it to yacc... (this problem is referred to in Bison manual, there are some

workarounds, however I was unable to make use of it).

23 Wish list

There should be way to omit types, and have them reconstructed.

I would like to have some support for named arguments, so functions can be called as:

Window::create(width => 20, height => 23, color => red);

This should come with default values.

24

