
Gontc manpage

May 27, 2002

1 NAME

gontc - compile and link Gont �les

2 SYNOPSIS

gontc [OPTIONS] �les...

3 DESCRIPTION

gontc is used to compile source Gont intro binaries, and then linking them together. It uses

concept of module in managing compilation. Module consists of interface (in *.gi source �le), and

implementation (in *.g source �le). In order to compile implementation compiler has to be able to

�nd compiled interface for module being compiled, and all modules it depends on.

Typical compilation involves running, for each module in project, gontc -c module.gi to

compile interfaces, then gontc -c module.g to compile implementation, and �nally gontc -o

prog mod1.go mod2.go...

4 OPTIONS

gontc recognizes following options:

� -c

just compile, don’t try to link

� -save-temps

save temporary �les. In normal circumstances temporary *.ksi �les produced during compi-

lation, and auxiliary linker �les are removed.

� -ksi OPT

pass option to Ksi compiler. Example usage might be: -ksi -fomit-frame-pointer

� -ksicc PROG

set Ksi compiler, for example -ksicc ppc-pld-linux-cc

� -O0

don’t optimize. Same as -ksi -O0.

� -O1

optimize. Same as -ksi -O1.

1

� -O2

optimize more. Same as -ksi -O2.

� -O3

optimize even more. Same as -ksi -O3.

� -Werror

treat warnings as fatal.

� -g

produce debug info. Same as -ksi -g.

� -S

just generate *.ksi �le and stop.

� -o OUTFILE

set linker output �le name. This doesn’t work with -c

� -B PREFIX

override pre�x. Pre�x is directory in which gontc looks for standard libraries, and from

which con�guration is read.

� -v

be verbose, display what is being done.

� -dump MODULE

dump named module and exit.

� -gia

operate in make interface archive mode. Usage is then: gontc -gia archive.gia mod1.gio...

� -ga

operate in make compiled implementation archive mode. Usage is then: gontc -ga archive.ga

mod1.go...

� -ugly

generate ugly Ksi code. This might be somewhat faster.

� -pretty

generate pretty Ksi code. Slower, useful, when you have to look at the generated code.

� -L DIR

add directory to library search path. This a�ects only looking for *.go and *.ga �les. Use

-ksi -L is you want to change path for *.a �les.

� -I DIR

add directory to interface search path. gontc looks for compiled interfaces (*.gio) there. You

can also specify *.gia archive instead of directory.

� -link-aux NAME

set name of auxiliary Ksi �le generated during link (‘gont-link-aux.ksi’ by default).

2

� -link-init NAME

set name of generated initialization function (‘gont init’ by default).

� -link-�ni NAME

set name of generated �nalization function (‘gont �ni’ by default).

� -link-main NAME

set name of generated toplevel function (‘main’ by default).

� -just-make-aux

just make auxiliary linking �le and stop.

� -only-needed LIBRARY

add only needed �les from named library. This is default behavior for standard libraries.

� -lib LIBRARY

same as -only-needed

� -greedy LIBRARY

add all �les from named library.

� -help

display list of options.

� {help

same as -help

5 FILES

gontc recognizes type of input �le based on extension. Following rules apply:

� *.g Gont sources

are compiled into *.ksi and *.go. *.ksi �le is passed to Ksi compiler, that produces *.o object

�le with machine code.

� *.gi Gont interface sources

are compiled into *.gio.

� *.go Gont compiled implementation �le

are used to resolve linking dependencies. You should never supply *.o �le resulting from *.g

compilation for linking. Always use *.go �le. Otherwise linking error will occur (unresolved

reference to Module$$$ go �le linked $ or something similar).

� *.gio Gont compiled interface �les

gontc doesn’t know what to do with this kind of �les. I.e. they cannot be passed as command

line options. They are open implicitly during compilation. -I option can be used to help

gontc �nd this kind of �les.

� *.ksi Ksi source �les

are passed to Ksi compiler. It should produce *.o �les from them.

3

� *.o Object �les with machine code

are just passed to linker. Never use *.o �les, produced from *.g, directly. Always use *.go

�les.

� *.a Libraries of object �les with machine code

are just passed to linker. Never use *.a �les, produced from linking results of *.g compilation

together, directly. Always use *.ga �les.

� *.ga Archives of Gont implementation �les

are unpacked to memory, and then treated as if each of *.go �les inside was speci�ed in

command line.

� *.gia Archives of Gont interface �les

similarly to *.gio �les, gontc doesn’t know what to do with these beasts. They can however

be passed as arguments to -I option, instead of directories to make gontc look in archive

when looking for interfaces.

6 AUTHOR

This manpage was written by Michal Moskal <malekith/at/pld.org.pl>.

4

