
Gont Features

May 27, 2002

$Id: faq.tex,v 1.1 2002/02/25 11:07:15 malekith Exp $

Contents

1 What’s Gont? 2

1.1 Safety . 2

1.2 Level of abstraction . 2

1.3 Memory Management . 2

2 How Gont compares to...? 2

2.1 ML . 2

2.2 Popcorn . 3

2.3 Cyclone . 3

2.4 C++ . 3

2.5 Java . 3

3 Compiler stu� 3

3.1 What’s Ksi? . 3

3.2 Does Gont compiler reconstruct types? . 3

4 What do I need to run Gont compiler? 3

5 Administrativia 4

5.1 How to contact Gont developers? . 4

5.2 Who wrote Gont compiler? . 4

1

1 What’s Gont?

Largely imperative composition of C-like lexical layer, control structures and speed with ML’s

typesystem, functions as �rst class citizens, and safety. Plus possibly few more things, like objects.

1.1 Safety

Gont is safe. This means that compiler shouldn’t produce any code, execution of which would cause

SEGV. Parse: it should not be possible to overow bu�ers, mismatch types of arguments in calls

and so on. However note, that SEGV can be obtained from playing with extern_c declaration,

compiler has no means of validating.

1.2 Level of abstraction

Gont is very higher level language.

<evangelisation>

[...] And, actually, the more you can avoid programming in C the more productive

you will be.

C is very e�cient, and very sparing of your machine’s resources. Unfortunately, C

gets that e�ciency by requiring you to do a lot of low-level management of resources

(like memory) by hand. All that low-level code is complex and bug-prone, and will

soak up huge amounts of your time on debugging. With today’s machines as powerful

as they are, this is usually a bad tradeo� { it’s smarter to use a language that uses the

machine’s time less e�ciently, but your time much more e�ciently. Thus, Python.

Eric S. Raymond

This is quotation from hacker howto by ESR :-). One may easily note that it does not only

talk about Python.

</evangelisation>

1.3 Memory Management

Gont provides transparent memory management, along with garbage collection (the particular

kind of garbage collector used is Boehm conservative garbage collector, used also by GCJ and

Popcorn). It generally means you can allocate as much as you want, forget the pointers, and the

Gont runtime system with get rid of unused memory.

2 How Gont compares to...?

2.1 ML

How is Gont di�erent from Caml or SML? (Caml and SML are functional languages, with imper-

ative features from ML family) Hm... generally all languages are interchangeable, what can be

written in one, can be written in all other. However in real life it is rather important how easy can

you get the code to work, how much bugs will compiler detect (vs bugs left for the programmer)

and how fast will it run. Gont places accents on these things somewhere between Caml and C.

Generally it does not provide as much support for functional programming as Caml does, similar

can be told about Gont’s module system (which is a toy, compared to functors and other ML

machinery) and restricted polimorphism. On the other hand, linking Gont code with C is very

easy, the only thing you need to remember, is not to put pointers from Gont, in malloc()’ed area

{ save it on stack, or in GC_malloc()’ed area. Interfacing OCaml is... ghm... nightmare, mainly

2

because of its precise garbage collector. Also Gont code will probably run faster, as it uses highly

optimizing back end (gcc), and because of restrictions put on the language itself (this is probably

not true yet).

2.2 Popcorn

How is Gont di�erent from Popcorn? (Popcorn is safe C subset, compiler is available to TALx86

(Typed Assembly Language)). Popcorn was inspiration for Gont :) However, it is somewhat limited

(especially to x86) and not currently under development (AFAIK).

2.3 Cyclone

Cyclone (http://www.cs.cornell.edu/projects/cyclone/) is language similar to Gont in the

same sense as C++ is similar to Java. It’s a dialect of C designed to be safe: free of crashes, bu�er

overows, format string attacks, and so on. Cyclone has more powerful typesystem { it includes

regions, that allow not to use garbage collection all the time. It also has pointers in C’s sense.

OTOH Gont is not dialect of C. It does not try to be backward compatible. This results in much

smaller language, probably easier to understand at �rst.

2.4 C++

Gont is not compatible with C. C++ tries to be. Popcorn, Cyclone and Java are all far more

C-like then Gont is.

Gont currently does not have even the very limited amount of objective features C++ has.

This should change in future. OTOH Gont polimorphic typesystem, with functions as �rst class

citizens, is far more powerful then the one that can be found in C++.

2.5 Java

Gont in intention should be equally easy/hard to understand at �rst, as Java is, but be able to

provide nice machinery, like patterns and polimorphism, later.

3 Compiler stu�

3.1 What’s Ksi?

Ksi is intermediate language that Gont compiler outputs. Ksi looks like Lisp, but is rather close

to C in spirit. Ksi is compiled by GCC front end.

3.2 Does Gont compiler reconstruct types?

Nope. At least not yet.

4 What do I need to run Gont compiler?

First of all, you need an operating system and platform, supported by GCC, Boehm GC and

OCaml. At the very moment Gont compiler is known to work under x86-linux, sparc32-linux and

alpha-linux (I had problems using gcc 3.0.3 on alpha, though, try using 3.1 snapshot). If you

managed to run it under some di�erent OS/arch, please tell us. Following software packages are

needed to compile Gont:

3

� GCC, version 3.0.1 or later (3.0.4 is recommended, you can also use 3.1 development snap-

shot). You need GCC sources, in order to compile Ksi. Ksi pre48 is required by current

version of Gont.

� GNU Make (no special version requirements, I guess :)

� OCaml, version 3.02 or later (3.01 wont work, 3.04 will). We have a local copy.

� Boehm Conservative Garbage Collector, version 6.0 or later I guess... Gont will build without

Garbage Collector. However it won’t free any allocated memory then ;) We have a local copy.

� If you want to generate documentation, you will need Hevea, TEX (and LATEX). If you are

not going to change documentation, you probably don’t need it.

All these packages (including Ksi compiler, but not Gont compiler, yet ;) are provided as RPM

packages by PLD Linux Distribution.

5 Administrativia

5.1 How to contact Gont developers?

There is mailing list available. To subscribe it, send empty email (subject also ain’t important)

to gont-subscribe@pld.org.pl. The list address is gont (at) pld org pl (of course, change (at) to @,

and spaces to dots, this is to protect against spam, if you are reading pdf { sorry :<). You can post

to the list, even if you are not subscribed.

5.2 Who wrote Gont compiler?

Gont compiler is being written at the University of Wroclaw, Computer Science Institute, by Michal

Moskal, Kamil Skalski and Marek Langiewicz. Gont compiler is web-hosted on team.pld.org.pl,

and ftp-hosted on ep09.kernel.pl.

4

