Net wor k Wor ki ng Group F. Strauss

Request for Comments: 3780 TU Braunschwei g
Cat egory: Experi nent al J. Schoenwael der
I nternational University Bremen

May 2004

SM ng - Next Ceneration Structure of Managenent | nformation
Status of this Meno
This nenp defines an Experinental Protocol for the Internet
community. It does not specify an Internet standard of any ki nd.
Di scussi on and suggestions for inprovenent are requested.
Distribution of this neno is unlimted.
Copyright Notice
Copyright (C) The Internet Society (2004). Al Rights Reserved.
Abstract
This nenp defines the base SMng (Structure of Managenent
I nformation, Next Generation) |anguage. SMng is a data definition
| anguage that provides a protocol -i ndependent representation for
managenent information. Separate RFCs define nappings of SMng to
speci fi ¢ managenent protocols, including SNVP.

Tabl e of Contents

1. Introduction . . . 3
1.1. The Hlstory of SNIng . 4
1.2. Terns of Requirenent Levels 5

2. SMng Data Modeling. 5
2.1. ldentifiers. . . . 6

3. Base Types and Derived Types : 7
3.1. CctetString. . 8
3.2 Pointer. . . 9
3.3 bj ect | dentlfl er
3.4. Integer32.00
3.5. Integer64.o n
3.6 Unsigned32 12
3.7 Unsignedé64 .13
3.8 Float32. ... 13
3.9. Float64. 1a
3.10. Float128 .. 15
3.11. Enuneration.17
3.12. Bitso

Strauss & Schoenwael der Experi nent al [Page 1]

RFC 3780

SM ng

3.13. Display Formats. . .
4., The SMng File Structure .

Comments . . .
Textual Data . . .
St at enent s and Argumsnts .

5. The nodul e St at enent

4. 1.
4, 2.
4, 3.
5. 1.
5. 2.
5. 3.
5.4,
5. 5.
5. 6.
5.7.
6. The
6. 1.
6. 2.
6. 3.
6. 4.
6. 5.
7. The
7. 1.
7.2.
7.3.
7. 4.
7.5.
7.6.
7.7.
7. 8.
8. The
8. 1.
8. 2.
8. 3.
8. 4.
8. 5.
9. The
9.1.
9. 2.

9. 3.

The nmodul e’ s |erort St atemsnt :

The nodul e’ s organi zati on Statenent.

The nodul e’ s contact Statenent

The nodul e’ s description Statenent

The nodul e’ s reference Statenent

The nmodul e’ s revision Statenent.

5.6.1. The revision's date Statenent :
5.6.2. The revision' s description Statenent.
Usage Exanpl e.

ext ensi on Statenent.

The extension's status St aterrent

The extension’s description Statenent.
The extension's reference Statenent.
The extension's abnf Statenent

Usage Exanpl e.

t ypedef Statenent.

The typedef’s type St aterrent

The typedef’s default Statenent.

The typedef’s format Statenent

The typedef’s units Statenent.

The typedef’s status Statenent :
The typedef’s description Statenent.
The typedef’'s reference Statenent.

Usage Exanpl es .

i dentity Statenent

cl

The identity’s parent St atemsnt

The identity' s status Statenent.

The identity’ description Statement.
The identity’' s reference Statenent
Usage Exanpl es .

ass Statenent.

The cl ass’ extends St aterrent

The class’ attribute Statenent

9.2.1. The attribute' s type St atemsnt

9.2.2. The attribute’ s access Statenent.
9.2.3. The attribute' s default Statenent
9.2.4. The attribute’s format Statenent.
9.2.5. The attribute’'s units Statenment

9.2.6. The attribute’' s status Statenent.
9.2.7. The attribute’s description Statenent
9.2.8. The attribute’' s reference Statenent
The class’ uni que Statenent.

Strauss & Schoenwael der Experi nent al

May 2004

18
20
20
21
21
21
22
23
23
23
23
23
24
24
24
25
25
26
26
26
26
27
27
27
27
28
28
29
29
29
30
30
30
31
31
31
32
32
32
32
32
33
33
33
34
34
34
35

[Page 2]

RFC 3780 SM ng May 2004

9.4. The class’ event Statenment e e e o 35
9.4.1. The event’'s status Statenent . e e e o 35

9.4.2. The event’'s description Statement 35

9.4.3. The event’'s reference Statenment 36

9.5. The class’ status Statenent. 36
9.6. The class’ description Statement 36
9.7. The class’ reference Statenment 37
9.8. Usage Example. .37

10. Extending a Module . . . R 1
11. SM ng Language Exten5|b|I|ty < 1 |
12. Security Considerations. 41
13. Acknowl edgenentsM
14. References . . . Y 4
14.1. Normative References Y 4
14.2. Informative References 42
Appendix A, NMRG SM NG Module 44
Appendix B. SMng ABNF Gamar. b3
Aut hors’ Addresses . . : e e e e 63
Ful I Copyri ght Statenent e o

1. Introduction

In traditional nmanagenent systens, managenent information is viewed
as a collection of managed objects, residing in a virtual infornmation
store, terned the Managenent |Information Base (MB). Collections of
rel ated objects are defined in MB nmodul es. These nodul es are
written in confornmance with a specification | anguage, the Structure
of Managenent Information (SM). There are different versions of the
SM. The SM version 1 (SMvl) is defined in [RFC1155], [RFC1212],

[RFC1215], and the SM version 2 (SMv2) in [RFC2578], [RFC2579], and
[RFC2580] . Both are based on adapted subsets of OSI’'s Abstract
Syntax Notation One, ASN. 1 [ASN1].

In a simlar fashion, policy provisioning information is viewed as a
col l ection of Provisioning Casses (PRCs) and Provisioning Instances
(PRIs) residing in a virtual information store, terned the Policy
Informati on Base (PIB). Collections of related Provisioning C asses
are defined in PIB nodules. PIB nodules are witten using the
Structure of Policy Provisioning Information (SPPI) [RFC3159] which
is an adapted subset of SMv2.

The SM vl and the SMv2 are bound to the Sinple Network Managenent
Protocol (SNWP) [RFC3411], while the SPPI is bound to the Common Qpen
Policy Service Provisioning (COPS-PR) Protocol [RFC3084]. Even

t hough the | anguages have common rules, it is hard to use common data
definitions with both protocols. It is the purpose of this docunent
to define a cormon data definition | anguage, naned SM ng, that can

Strauss & Schoenwael der Experi nment al [Page 3]

RFC 3780 SM ng May 2004

formally specify data nodel s i ndependent of specific protocols and
applications. The appendi x of this docunent defines a core nodule
that supplies common SM ng definitions.

A conpani on docunent contains an SM ng | anguage extension to define
SNWP specific mappings of SMng definitions in conmpatibility with
SMv2 MB nodul es [RFC3781]. Additional |anguage extensions nay be
added in the future, e.g., to define COPS-PR specific mappings of
SMng definitions in a way that is conpatible with SPPI PIBs.

Section 2 gives an overview of the basic concepts of data nodeling
usi ng SM ng, while the subsequent sections present the concepts of
the SMng | anguage in detail: the base types, the SMng file
structure, and all SM ng core statenents.

The remai nder of the docunment describes extensibility features of the
| anguage and rules to foll ow when changes are applied to a nodul e.
Appendi x B contains the granmar of SMng in ABNF [RFC2234] notation

1.1. The History of SM ng

SMng started in 1999 as a research project to address sone drawbacks
of SMv2, the current data nodeling | anguage for managenent

i nformati on bases. Prinmarily, its partial dependence on ASN.1 and a
nunber of exception rules turned out to be problematic. In 2000, the
wor k was handed over to the I RTF Network Managenent Research G oup
where it was significantly detailed. Since the work of the RAP

Wor ki ng Group on COPS-PR and SPPI energed in 1999/ 2000, SM ng was
split into two parts: a core data definition | anguage (defined in
this docunent) and protocol nappings to allow the application of core
definitions through (potentially) multiple managenent protocols. The
repl acement of SMv2 and SPPI by a single nerged data definition

| anguage was also a primary goal of the I ETF SM NG Wr ki ng G oup that
was chartered at the end of 2000.

The requirenents for a new data definition | anguage were di scussed
several tinmes within the I ETF SM NG Wrki ng G oup and changed
significantly over tinme [RFC3216], so that another proposal (in
addition to SMng), naned SM Data Structures (SM-DS), was presented
to the Working G oup. In the end, neither of the two proposals found
enough consensus and support, and the attenpt to nmerge the existing
concepts did not succeed, resulting in the Wrking Goup being closed
down in April 2003.

In order to record the work of the NVRG (Network Managenent Research
Group) on SMng, this meno and the acconpanyi ng neno on the SNWP
protocol mappi ng [RFC3781] have been published for informationa

pur poses.

Strauss & Schoenwael der Experi nment al [Page 4]

RFC 3780 SM ng May 2004

Not e that throughout these docunents, the term"SMng" refers to the
specific data nodeling | anguage that is specified in this docunent,
whereas the term"SM NG' refers to the general effort within the | ETF
Wirking Group to define a new nanagenent data definition | anguage as
an SMv2 successor and probably an SPPI nerger, for which "SMng" and
"SM -DS" were two specific proposals.

1.2. Terms of Requirenent Levels

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

2. SMng Data Modeling

SMng is a | anguage designed to specify nanagenent information in a
structured way readable to conputer programs, e.g., MB conpilers, as
wel | as to hunman readers.

Managenent information is nodeled in classes. C asses can be defined
fromscratch or by derivation froma parent class. Derivation from
mul tiple parent classes is not possible. The concept of classes is
described in Section 9.

Each cl ass has a nunber of attributes. Each attribute represents an
atom c piece of information of a base type, a sub-type of a base
type, or another class. The concept of attributes is described in
Section 9. 2.

The base types of SMng include signed and unsi gned integers, octet
strings, enuneration types, bitset types, and pointers. Pointers are
references to class instances, attributes of class instances, or
arbitrary identities. The SMng type systemis described in Section
3.

Rel ated class and type definitions are defined in nodules. A nodule
may refer to definitions fromother nodules by inporting identifiers
fromthose nodul es. Each nodule may serve one or multiple purposes:
o the definition of managenent cl asses,

0 the definition of events,

0 the definition of derived types,

0 the definition of arbitrary untyped identities serving as val ues
of pointers,

Strauss & Schoenwael der Experi nment al [Page 5]

RFC 3780 SM ng May 2004

o the definition of SMng extensions allow ng the [ocal nodule or
ot her nodules to specify information beyond the scope of the base
SMng in a machi ne readabl e notation. Sonme extensions for the
application of SMng in the SNWP framework are defined in
[RFC3781],

0 the definition of information beyond the scope of the base SM ng
statenents, based on locally defined or inported SM ng extensions.

Each nodule is identified by an upper-case identifier. The nanmes of
all standard nodul es nmust be unique (but different versions of the
same nodul e shoul d have the same nane). Devel opers of enterprise
nmodul es are encouraged to choose nanes for their nodul es that will
have a | ow probability of colliding with standard or other enterprise
nmodul es, e.g., by using the enterprise or organi zati on nane as a
prefix.

2. 1. Identifiers

Identifiers are used to identify different kinds of SMng itens by
nane. Each identifier is valid in a namespace whi ch depends on the
type of the SMng item being defi ned:

0 The gl obal nanespace contains all nodule identifiers.

o Each nodul e defines a new nanespace. A nodul e s nanespace my
contain definitions of extension identifiers, derived type
identifiers, identity identifiers, and class identifiers.
Furthernore, a nodule may inport identifiers of these kinds from
other nmodules. Al these identifiers are also visible within al
i nner nanespaces of the nodul e.

0 Each class within a nodul e defines a new nanespace. A class
nanespace may contain definitions of attribute identifiers and
event identifiers.

o0 Each enuneration type and bitset type defines a new nanespace of
its naned nunbers. These named nunbers are visible in each
expression of a correspondi ng value, e.g., default values and
sub-typing restrictions.

0 Extensions nay define additional namespaces and have additi onal
rul es of other nanespaces’ visibility.

Wthin every nanespace each identifier MJST be unique.

Strauss & Schoenwael der Experi nment al [Page 6]

RFC 3780 SM ng May 2004

Each identifier starts with an upper-case or | ower-case character,
dependent on the kind of SMng item followed by zero or nore
letters, digits, and hyphens.

Al'l identifiers defined in a namespace MJST be uni que and SHOULD NOT
only differ in case. Identifiers MJST NOT exceed 64 characters in
length. Furthernore, the set of all identifiers defined in al
nmodul es of a single standardizati on body or organi zati on SHOULD be
uni que and menoni ¢c. This pronotes a conmon | anguage for humans to
use when di scussing a nodul e.

To reference an itemthat is defined in the local nodule, its
definition MJST sequentially precede the reference. Thus, there MJST
NOT be any forward references.

To reference an itemthat is defined in an external nodule it MJST be
inported (Section 5.1). Identifiers that are neither defined nor
i nported MJUST NOT be visible in the | ocal nodule.

When identifiers fromexternal nodules are referenced, there is the
possibility of name collisions. As such, if different itenms with the
sane identifier are inported or if inported identifiers collide with
identifiers of locally defined itenms, then this anmbiguity is resol ved
by prefixing those identifiers with the nanes of their nodul es and

t he nanmespace operator ‘::’, i.e., ‘Mdule::itemi. O course, this
notation can be used to refer to identifiers even when there is no

nanme collision

Note that SM ng core | anguage keywords MJUST NOT be inported. See the
“...Keyword rules of the SMng ABNF granmar in Appendix B for a |ist
of those keywords.

3. Base Types and Derived Types

SM ng has a set of base types, simlar to those of many progranmm ng
| anguages, but with some differences due to special requirenents from
t he managenent infornmation nodel

Addi ti onal types nmay be defined, derived fromthose base types or
fromother derived types. Derived types nay use subtyping to
formally restrict the set of possible values. An initial set of
comonly used derived types is defined in the SMng standard nodul e
NVRG SM NG [RFC3781] .

The different base types and their derived types allow different

ki nds of subtyping, nanely size restrictions of octet strings
(Section 3.1), range restrictions of nunmeric types (Section 3.4

Strauss & Schoenwael der Experi nment al [Page 7]

RFC 3780 SM ng May 2004

through Section 3.10), restricted pointer types (Section 3.2), and
restrictions on the sets of named nunbers for enuneration types
(Section 3.11) and bit sets (Section 3.12).

3.1. OCctetString

The CctetString base type represents arbitrary binary or textua

data. Although SMng has a theoretical size limtation of 2716-1
(65535) octets for this base type, nodul e designers should realize
that there may be inplenentation and interoperability limtations for
sizes in excess of 255 octets.

Val ues of octet strings nay be denoted as textual data enclosed in
doubl e quotes or as arbitrary binary data denoted as a ‘0Ox’ -prefixed
hexadeci mal val ue of an even nunber of at |east two hexadeci nal
digits, where each pair of hexadecinal digits represents a single
octet. Letters in hexadecimal values MAY be upper-case, but |ower-
case characters are RECOMWENDED. Textual data may contain any nunber
(possibly zero) of any 7-bit displayable ASCI| characters, including
tab characters, spaces, and line term nator characters (nl or cr &
nl). Sone characters require a special encoding (see Section 4.2).
Textual data may span nultiple Iines, where each subsequent |ine
prefix containing only white space up to the columm where the first
line’'s data starts SHOULD be skipped by parsers for a better text
formatting.

When defining a type derived (directly or indirectly) fromthe
CctetString base type, the size in octets nmay be restricted by
appending a list of size ranges or explicit size values, separated by
pipe ‘|’ characters, with the whole list enclosed in parenthesis. A
size range consists of a | ower bound, two consecutive dots ‘..’, and
an upper bound. Each value can be given in decimal or ‘0x’ -prefixed
hexadeci mal notation. Hexadeci mal nunbers nust have an even nunber
of at least two digits. Size restricting values MJST NOT be
negative. |If nmultiple values or ranges are given, they all MJST be
di sjoint and MJST be in ascending order. |If a size restrictionis
applied to an already size restricted octet string, the new
restriction MJUST be equal or nore limting, that is, raising the

| ower bounds, reducing the upper bounds, renoving explicit size

val ues or ranges, or splitting ranges into nultiple ranges with

i nt er medi at e gaps.

Strauss & Schoenwael der Experi nment al [Page 8]

RFC 3780
Val ue Exanpl es:
"This is a multiline
textual data exanple."

3.

3.

Strauss & Schoenwael der

2.

3.

"This is "illegally" quoted."
"This is \"legally\" quoted."
"But this is "ok', as well."
0x123

0x534d496e670a

Restriction Exanpl es:

CctetString
CctetString
CctetString
CctetString
CctetString

(0 |
(4)
(-11 1)
(51 0)
(1] 1..10)

4. .255)

Poi nt er

The Pointer base type represents val ues that
attri butes of class instances,
The only values of the Pointer type that can be present

i nst ances,

can refer to identities.
concerned identities.

SM ng

May 2004

| egal
illegal quotes
| egal | y encoded quotes

| egal apostrophe quoting
| egal zero length
illegal odd hex length

| egal octet string

| egal size spec

| egal exact size

illegal negative size
illegal ordering

illegal overl apping

reference cl ass
or arbitrary identities.
in a nodul e

They are denoted as identifiers of the

When defining a type derived (directly or indirectly) fromthe

Poi nter base type,

attribute or identity, and al

the values nay be restricted to a specific class,
(directly or indirectly) derived itens

t hereof by appending the identifier of the appropriate construct

encl osed in parenthesis.
Val ue Exanpl es:

nul |
snimpUDPDomai n

Restriction Exanpl es:
Poi nt er
oj ectldentifier
The Cbjectldentifier

nanes for
pr ot ocol

(snnmpTransport Domai n) //

| egal identity nane
| egal identity nane
| egal restriction

use with SNWP and COPS- PR
i ndependent SM ng nodul es.
and COPS- PR mappi ngs of attributes of type Pointer

Experi nment al

base type represents adninistratively assigned
This type SHOULD NOT be used in
It is meant to be used in SNWP

(Section 3.2).

[Page 9]

RFC 3780 SM ng May 2004

Str

Val ues of this type nay be denoted as a sequence of nunerical non-
negati ve sub-identifier values in which each MJST NOT exceed 2732-1
(4294967295). Sub-identifiers may be denoted in decimal or *‘O0x' -
prefixed hexadecimal. They are separated by single dots and w t hout
any internediate white space. Alternatively (and preferred in nost
cases), the first element may be a previously defined or inported

| ower-case identifier, representing a static object identifier
prefix.

Al t hough the nunber of sub-identifiers in SMng object identifiers is
not limted, nodul e designers should realize that there nmay be

i npl ementations that stick with the SMvl/v2 lint of 128 sub-
identifiers.

bj ect identifier derived types cannot be restricted in any way.

Val ue Exanpl es:

1.3.6.1 /1 legal nunerical oid

mb-2.1 /'l legal oid with identifier prefix
internet.4.1.0x0627. 0x01 /1 legal oid with hex subids

iso.-1 /1 illegal negative subid

iso.org.6 /1 illegal non-heading identifier

I F-MB::ifNunber.O /1 legal fully qualified instance oid
| nt eger 32

The | nteger32 base type represents integer val ues between
-2731 (-2147483648) and 2731-1 (2147483647).

Val ues of type Integer32 may be denoted as deci mal or hexadeci nal
nunbers, where only decimal nunbers can be negative. Decimal nunbers
ot her than zero MJUST NOT have | eading zero digits. Hexadecinm
nunbers are prefixed by ‘Ox’ and MJST have an even nunber of at | east
two hexadecimal digits, where letters MAY be upper-case, but |ower-
case characters are RECOVVENDED

When defining a type derived (directly or indirectly) fromthe

I nt eger 32 base type, the set of possible values may be restricted by
appending a list of ranges or explicit values, separated by pipe ‘|
characters, and the whole list enclosed in parenthesis. A range
consists of a | ower bound, two consecutive dots ‘..’, and an upper
bound. Each val ue can be given in decimal or ‘O0x’-prefixed
hexadeci mal notation. Hexadeci mal nunbers nust have an even nunber
of at least two digits. |If nultiple values or ranges are given they
all MJST be disjoint and MIUST be in ascending order. If a value
restriction is applied to an already restricted type, the new
restriction MJUST be equal or nore limting, that is raising the |ower

auss & Schoenwael der Experi nent al [Page 10]

RFC 3780 SM ng May 2004

3.

5.

bounds, reducing the upper bounds, renoving explicit val ues or
ranges, or splitting ranges into nultiple ranges with internedi ate

gaps.
Val ue Exanpl es:

015 /'l illegal |eading zero

-123 /1 legal negative val ue

-1 /1 illegal intermedi ate space

Oxabc /'l illegal hexadecimal value |ength
- Oxf f /1 illegal sign on hex val ue
0x80000000 /1 illegal value, too |arge

Oxf 0Of /1 1 egal hexadecinal val ue

Restriction Exanpl es:

Integer32 (0 | 5..10) /'l legal range spec
Integer32 (5..10 | 2..3) /'l illegal ordering
Integer32 (4..8 | 5..10) /1 illegal overlapping

| nt eger 64

The | nteger64 base type represents integer val ues between
- 2763 (-9223372036854775808) and 2"63-1 (9223372036854775807) .

Val ues of type Integer64 may be denoted as deci mal or hexadeci nal
nunbers, where only decimal nunbers can be negative. Decimal nunbers
ot her than zero MJUST NOT have |l eading zero digits. Hexadecim
nunbers are prefixed by ‘Ox’ and MJST have an even nunber of
hexadeci nal digits, where letters MAY be upper-case, but |ower-case
characters are RECOVMENDED

When defining a type derived (directly or indirectly) fromthe

I nt eger 64 base type, the set of possible values may be restricted by
appending a list of ranges or explicit values, separated by pipe ‘|
characters, with the whole list enclosed in parenthesis. A range
consi sts of a | ower bound, two consecutive dots ‘..’, and an upper
bound. Each val ue can be given in decimal or ‘O0x’-prefixed
hexadeci mal notation. Hexadeci mal nunbers nust have an even nunber
of at least two digits. |If nultiple values or ranges are given, they
all MJST be disjoint and MIUST be in ascending order. |If a value
restriction is applied to an already restricted type, the new
restriction MJUST be equal or nore limting, that is raising the |ower
bounds, reducing the upper bounds, renoving explicit val ues or
ranges, or splitting ranges into nultiple ranges with internedi ate

gaps.

Strauss & Schoenwael der Experi nent al [Page 11]

RFC 3780 SM ng May 2004

Val ue Exanpl es:

015 /'l illegal |eading zero

-123 /1 legal negative val ue

-1 /1 illegal intermedi ate space

Oxabc /1 illegal hexadecimal value |ength
- Oxf f /1 illegal sign on hex val ue
0x80000000 /1 legal value

Restriction Exanpl es:

Integer64 (0 | 5..10) /'l legal range spec
Integer64 (5..10 | 2..3) /'l illegal ordering
Integer64 (4..8 | 5..10) /1 illegal overlapping

3.6. Unsigned32

The Unsi gned32 base type represents positive integer values between 0
and 2732-1 (4294967295).

Val ues of type Unsigned32 nay be denoted as deci mal or hexadeci ma
nunbers. Decimal nunbers other than zero MJUST NOT have | eading zero
digits. Hexadecimal nunbers are prefixed by ‘0x’ and MJUST have an
even nunber of hexadecimal digits, where letters MAY be upper-case,
but | ower-case characters are RECOMVENDED

When defining a type derived (directly or indirectly) fromthe

Unsi gned32 base type, the set of possible values nay be restricted by
appending a list of ranges or explicit values, separated by pipe ‘|
characters, with the whole list enclosed in parenthesis. A range
consists of a | ower bound, two consecutive dots ‘..’, and an upper
bound. Each val ue can be given in decimal or ‘O0x’-prefixed
hexadeci mal notation. Hexadeci mal nunbers nust have an even nunber
of at least two digits. |If nultiple values or ranges are given, they
all MJST be disjoint and MIUST be in ascending order. If a value
restriction is applied to an already restricted type, the new
restriction MJUST be equal or nore limting, that is raising the | ower
bounds, reducing the upper bounds, renoving explicit val ues or

ranges, or splitting ranges into nultiple ranges with internedi ate

gaps.
Val ue Exanpl es:

015 /'l illegal |eading zero

-123 /1 illegal negative val ue

Oxabc /1 illegal hexadecimal value |ength
0x80000000 /'l 1 egal hexadecimal val ue
0x8080000000 /1 illegal value, too |arge

Strauss & Schoenwael der Experi nent al [Page 12]

RFC 3780 SM ng May 2004

3.

.7

8.

Restriction Exanpl es:

Unsi gned32 (0 | 5..10) /'l legal range spec
Unsi gned32 (5..10 | 2..3) /1 illegal ordering
Unsi gned32 (4..8 | 5..10) /'l illegal overl apping

Unsi gned64

The Unsi gned64 base type represents positive integer values between 0
and 2764-1 (18446744073709551615).

Val ues of type Unsigned64 nay be denoted as deci mal or hexadeci ma
nunbers. Decimal nunbers other than zero MJUST NOT have | eading zero
digits. Hexadecimal nunbers are prefixed by ‘0x’ and MJUST have an
even nunber of hexadecimal digits, where letters MAY be upper-case,
but | ower-case characters are RECOMVENDED

When defining a type derived (directly or indirectly) fromthe

Unsi gned64 base type, the set of possible values nay be restricted by
appending a list of ranges or explicit values, separated by pipe ‘|
characters, with the whole |list enclosed in parenthesis. A range
consists of a | ower bound, two consecutive dots ‘..’, and an upper
bound. Each val ue can be given in decimal or ‘O0x’-prefixed
hexadeci mal notation. Hexadeci mal nunbers nust have an even nunber
of at least two digits. |If nultiple values or ranges are given, they
all MJST be disjoint and MJUST be in ascending order. |If a value
restriction is applied to an already restricted type, the new
restriction MJUST be equal or nore limting, that is raising the |ower
bounds, reducing the upper bounds, renoving explicit val ues or

ranges, or splitting ranges into nultiple ranges with internedi ate

gaps.
Val ue Exanpl es:

015 /1 illegal |eading zero

-123 /1 illegal negative val ue

Oxabc /1 illegal hexadecimal value |ength
0x8080000000 /'l 1 egal hexadecimal val ue

Restriction Exanpl es:

Unsi gned64 (1..10000000000) // legal range spec
Unsi gned64 (5..10 | 2..3) /'l illegal ordering

Fl oat 32

The Fl oat 32 base type represents floating point values of single
preci sion as described by [| EEE754].

Strauss & Schoenwael der Experi nent al [Page 13]

RFC 3780 SM ng May 2004

Val ues of type Float32 may be denoted as a decimal fraction with an
opti onal exponent, as known from many progranmm ng | anguages. See the
grammar rule ‘floatValue of Appendix B for the detail ed syntax.
Speci al values are ‘snan’ (signalling Not-a-Nunber), ‘qnan’ (quiet

Not - a- Nunmber), ‘neginf’ (negative infinity), and ‘posinf’ (positive
infinity). Note that -0.0 and +0.0 are different floating point
values. 0.0 is equal to +0.0.

When defining a type derived (directly or indirectly) fromthe

Fl oat 32 base type, the set of possible values may be restricted by
appending a list of ranges or explicit values, separated by pipe ‘|
characters, with the whole list enclosed in parenthesis. A range

consi sts of a | ower bound, two consecutive dots ‘..’, and an upper
bound. If multiple values or ranges are given, they all MJST be
di sjoint and MJST be in ascending order. |If a value restriction is

applied to an already restricted type, the new restriction MJST be
equal or nore linmiting, that is raising the | ower bounds, reducing
t he upper bounds, renoving explicit values or ranges, or splitting
ranges into nmultiple ranges with internedi ate gaps. The speci al
val ues ‘snan’, ‘qgnan’, ‘neginf’, and ‘posinf’ nust be explicitly
listed in restrictions if they shall be included, where ‘snan’ and
‘gnan’ cannot be used in ranges.

Note that encoding is not subject to this specification. It has to
be described by protocols that transport objects of type Float32.
Note al so that npst floating point encodings disallowthe
representation of many val ues that can be witten as deci nal
fractions as used in SMng for human readability. Therefore,

explicit values in floating point type restrictions should be handl ed
with care.

Val ue Exanpl es:

00.1 /'l illegal |eading zero
3. 1415 /'l legal value
-2.5E+3 /'l legal negative exponential value

Restriction Exanpl es:

Float32 (-1.0..1.0) /'l legal range spec
Float32 (1| 3.3 | 5) /'l legal, probably unrepresentable 3.3
Fl oat 32 (neginf..-0.0) /'l 1egal range spec

Float32 (-10.0..10.0 | 0) [// illegal overlapping

Strauss & Schoenwael der Experi nent al [Page 14]

RFC 3780

3.9. Float64

SM ng

May 2004

The Fl oat 64 base type represents floating point val ues of double
preci sion as described by [| EEE754].

Val ues of type Float64 may be denoted as a decinma

opti onal exponent,
grammar rule ‘floatVal ue’
Speci al val ues are ‘snan’
Not - a- Nunmber), ‘ negi nf’
infinity). Note that

values. 0.0 is equal to +0.0.

as known from many progranm ng | anguages.

fraction with an
See the

of Appendix B for the detailed syntax.
(signalling Not-a-Nunber),
(negative infinity),
-0.0 and +0.0 are different floating point

‘gnan’
and ‘ posi nf’

(qui et
(positive

When defining a type derived (directly or indirectly) fromthe

Fl oat 64 base type,

appending a list of
characters,
consi sts of a | ower
bound.

bound,

equal or nore limting, that

t he upper bounds,
val ues ‘snan’

‘gnan’, ‘neginf’,

listed in restrictions if they shal

‘gnan’ cannot be used in ranges.

Note that encoding is not subject to this specification.

two consecutive dots ‘..

If multiple values or ranges are given,
di sjoint and MJST be in ascendi ng order.
applied to an already restricted type,
is raising the | ower bounds,
removi ng explicit values or ranges,
ranges into nultiple ranges with internedi ate gaps.

the set of possible values may be restricted by
ranges or explicit val ues,
with the whole |ist enclosed in parenthesis.

separated by pipe ‘|’
A range
and an upper
they all MJST be
If a value restriction is
the new restriction MJST be
reduci ng
or splitting
The speci al
nmust be explicitly
be included, where ‘snan’ and

and ‘ posi nf’

It has to

be described by protocols that transport objects of type Float64.
Note al so that nost floating point encodings disallowthe
representation of many val ues that can be witten as deci nal

fractions as used in SMng for

human readability.

Ther ef or e,

explicit values in floating point type restrictions should be handl ed

with care.

Val ue Exanpl es:

00.1 /1
3. 1415 /1
- 2. 5E+3 /1

Restriction Exanpl es:

Float64 (-1.0..1.0) I
Float64 (1 | 3.3 | 5) Il
Fl oat 64 (neginf..-0.0) I

Float64 (-10.0..10.0 | 0) //

Strauss & Schoenwael der

Experi nment al

illegal |eading zero
| egal val ue
| egal negative exponential value

| egal range spec

| egal , probably unrepresentable 3.3
| egal range spec

illegal overlapping

[Page 15]

RFC 3780 SM ng May 2004

3.10. Float128

The Fl oat 128 base type represents floating point values of quadruple
preci sion as described by [| EEE754].

Val ues of type Float128 nay be denoted as a decimal fraction with an
opti onal exponent, as known from many progranmm ng | anguages. See the
grammar rule ‘floatValue of Appendix B for the detail ed syntax.
Speci al values are ‘snan’ (signalling Not-a-Nunber), ‘qnan’ (quiet

Not - a- Nunmber), ‘neginf’ (negative infinity), and ‘posinf’ (positive
infinity). Note that -0.0 and +0.0 are different floating point
values. 0.0 is equal to +0.0.

When defining a type derived (directly or indirectly) fromthe

Fl oat 128 base type, the set of possible values nay be restricted by
appending a list of ranges or explicit values, separated by pipe ‘|
characters, with the whole list enclosed in parenthesis. A range

consists of a | ower bound, two consecutive dots ‘..’, and an upper
bound. If multiple values or ranges are given, they all MJST be
di sjoint and MJST be in ascending order. |If a value restriction is

applied to an already restricted type, the new restriction MJST be
equal or nore linmiting, that is raising the | ower bounds, reducing
t he upper bounds, renoving explicit values or ranges, or splitting
ranges into nmultiple ranges with internedi ate gaps. The speci al
val ues ‘snan’, ‘qgnan’, ‘neginf’, and ‘posinf’ nust be explicitly
listed in restrictions if they shall be included, where ‘snan’ and
‘gnan’ cannot be used in ranges.

Note that encoding is not subject to this specification. It has to
be described by protocols that transport objects of type Float128.
Note al so that nost floating point encodings disallowthe
representation of many val ues that can be witten as deci nal
fractions as used in SMng for human readability. Therefore,

explicit values in floating point type restrictions should be handl ed
with care.

Val ue Exanpl es:

00.1 /'l illegal |eading zero
3. 1415 /'l legal value
-2.5E+3 /'l legal negative exponential value

Restriction Exanpl es:

Fl oat 128 (-1.0..1.0) /! legal range spec
Float128 (1 | 3.3 | 5) /'l legal, probably unrepresentable 3.3
FI oat 128 (negi nf..-0.0) /'l legal range spec

Fl oat 128 (-10.0..210.0 | 0) // illegal overl apping

Strauss & Schoenwael der Experi nent al [Page 16]

RFC 3780 SM ng May 2004

3.11. Enuneration

The Enunerati on base type represents values froma set of integers in
the range between -2731 (-2147483648) and 2"31-1 (2147483647), where
each val ue has an assigned nane. The list of those naned nunbers has
to be commua- separated, enclosed in parenthesis, and appended to the
“Enuneration’ keyword. Each naned nunber is denoted by its | ower-
case identifier followed by the assigned integer value, denoted as a
deci mal or ‘Ox’-prefixed hexadeci mal nunber, enclosed in parenthesis.
Hexadeci mal nunbers nmust have an even nunber of at |east two digits.
Every nane and every nunber in an enuneration type MJST be uni que.

It is RECOWENDED t hat val ues be positive, start at 1, and be
nunbered contiguously. Al nanmed nunbers MJST be given in ascendi ng
or der.

Val ues of enuneration types nay be denoted as decinmal or ‘O0Ox’ -
prefixed hexadeci mal nunbers or preferably as their assigned nanes.
Hexadeci mal nunbers must have an even nunber of at |east two digits.

When types are derived (directly or indirectly) froman enuneration
type, the set of named nunbers may be equal or restricted by renpving
one or nore naned nunbers, but no named nunbers nay be added or
changed regarding its nane, val ue, or both.

Type and Val ue Exanpl es:

Enuneration (up(1l), down(2), testing(3))

Enuneration (down(2), up(l)) // illegal order
0 /1 legal (though not recomrended) val ue
up /1 legal value given by nane
2 /! legal value given by nunber
3.12. Bits

The Bits base type represents bit sets. That is, a Bits value is a
set of flags identified by small integer nunbers starting at 0. Each
bit nunber has an assigned nane. The list of those named nunbers has
to be commua-separated, enclosed in parenthesis, and appended to the
‘Bits’ keyword. Each named nunber is denoted by its | ower-case
identifier followed by the assigned integer value, denoted as a

deci mal or ‘Ox’-prefixed hexadeci mal nunber, enclosed in parenthesis.
Hexadeci mal nunbers nmust have an even nunber of at |east two digits.
Every nane and every nunber in a bits type MJST be unique. It is
RECOVMENDED t hat nunbers start at 0 and be numnbered conti guously.
Negati ve nunbers are forbidden. Al named nunbers MJST be given in
ascendi ng order.

Strauss & Schoenwael der Experi nent al [Page 17]

RFC 3780 SM ng May 2004

3.

Val ues of bits types may be denoted as a conmme-separated |ist of

deci mal or ‘Ox’ -prefixed hexadeci mal nunbers or preferably their

assi gned nanmes enclosed in parenthesis. Hexadecimal nunbers mnust
have an even nunmber of at least two digits. There MJST NOT be any
el ement (by name or nunber) listed nore than once. Elements MJST be
listed in ascendi ng order.

When defining a type derived (directly or indirectly) froma bits
type, the set of named nunbers may be restricted by renoving one or
nor e named nunbers, but no naned nunbers may be added or changed
regarding its nane, value, or both.

Type and Val ue Exanpl es:

Bits (readable(0), witable(l), executable(2))

Bits (witable(l), readable(0) // illegal order

) /1 legal enpty val ue

(readabl e, witable, 2) /1 legal value

(0, readabl e, executable) /1 illegal, readabl e(0) appears tw ce
(witable, 4) /1 illegal, elenent 4 out of range

13. Display Formats

Attribute and type definitions allow the specification of a format to
be used when a value of that attribute or an attribute of that type
is displayed. Format specifications are represented as textual data.

Wien the attribute or type has an underlying base type of |nteger32,

I nt eger 64, Unsi gned32, or Unsigned64, the format consists of an

i nteger-format specification containing two parts. The first part is
a single character suggesting a display format, either: *‘x for
hexadecimal, ‘d for decimal, ‘0 for octal, or ‘b’ for binary. For
all types, when rendering the value, |eading zeros are omtted, and
for negative values, a minus sign is rendered i medi ately before the
digits. The second part is always onitted for ‘x’, ‘o', and ‘b’, and
need not be present for ‘d . |If present, the second part starts with
a hyphen and is followed by a deci mal nunber, which defines the

i nplied deci mal point when rendering the value. For exanple ‘d-2
suggests that a value of 1234 be rendered as ‘12.34".

Wien the attribute or type has an underlying base type of

CctetString, the format consists of one or nore octet-fornat

speci fications. Each specification consists of five parts, with each
part using and renoving zero or nore of the next octets fromthe

Strauss & Schoenwael der Experi nent al [Page 18]

RFC 3780 SM ng May 2004

val ue and producing the next zero or nore characters to be displ ayed.
The octets within the value are processed in order of significance,
nmost significant first.

The five parts of a octet-format specification are:

1. The (optional) repeat indicator. |If present, this part is a ‘*’
and indicates that the current octet of the value is to be used as
the repeat count. The repeat count is an unsigned integer (which
may be zero) specifying how many tinmes the remai nder of this
octet-format specification should be successively applied. If the
repeat indicator is not present, the repeat count is one.

2. The octet length: one or nore decimal digits specifying the nunber
of octets of the value to be used and formatted by this octet-
specification. Note that the octet length can be zero. |If less
than this nunber of octets remain in the value, then the |esser
nunber of octets are used.

3. The display format, either: ‘x’ for hexadecimal, ‘d for decinal
‘o’ for octal, ‘a for ASCIl, or ‘t’ for UTF-8 [RFC3629]. If the
octet length part is greater than one, and the display format part
refers to a nuneric format, then network byte-ordering (big-endian
encoding) is used to interpret the octets in the value. The
octets processed by the ‘t’ display format do not necessarily form
an integral nunber of UTF-8 characters. Trailing octets which do
not forma valid UTF-8 encoded character are discarded.

4. The (optional) display separator character. |If present, this part
is a single character produced for display after each application
of this octet-specification; however, this character is not
produced for display if it would be inmmediately followed by the
di splay of the repeat term nator character for this octet
specification. This character can be any character other than a
decimal digit and a ‘*’.

5. The (optional) repeat term nator character, which can be present
only if the display separator character is present and this octet
specification begins with a repeat indicator. |If present, this
part is a single character produced after all the zero or nore
repeated applications (as given by the repeat count) of this octet
specification. This character can be any character other than a
decimal digit and a ‘*’.

Qut put of a display separator character or a repeat termnator

character is suppressed if it would occur as the last character of
t he di spl ay.

Strauss & Schoenwael der Experi nent al [Page 19]

RFC 3780 SM ng May 2004

If the octets of the value are exhausted before all the octet format
speci fications have been used, then the excess specifications are
ignored. |If additional octets remain in the value after interpreting
all the octet format specifications, then the [ast octet formt
specification is re-interpreted to process the additional octets,
until no octets remain in the val ue.

Note that for some types, no format specifications are defined. For
derived types and attributes that are based on such types, formt
speci ficati ons SHOULD be omitted. Inplenentations MJST ignore format
specifications they cannot interpret. Al so note that the SM ng
grammar (Appendi x B) does not specify the syntax of format

speci fications.

Di spl ay Format Exanpl es:

Base Type For mat Exanpl e Val ue Render ed Val ue
Cctet String 255a "Hello World." Hel l o Worl d.
CctetString 1x: "Hel Il o!'" 48: 65: 6¢: 6¢C: 6f: 21
Cctet String 1d: 1d: 1d. 1d, 1ald: 1d 0x0d1eOf 002d0400 13:30:15.0,-4:0
Cctet String 1d. 1d. 1d. 1d/ 2d 0x0a0000010400 10.0.0.1/1024
CctetString *1x:/1x: 0x02aabbccddee aa: bb/cc: dd: ee
Integer32 d-2 1234 12. 34

4. The SMng File Structure

The topnost container of SMng information is a file. An SMng file
may contain zero, one or nore nodules. It is RECOVMENDED t hat
nmodul es be stored into separate files by their nodul e names, where
possi bl e. However, for dedicated purposes, it may be reasonable to
collect several nodules in a single file.

The top level SMng construct is the ‘nodul e’ statenment (Section 5)
that defines a single SMng nodule. A nodul e contains a sequence of
sections in an obligatory order with different kinds of definitions.
Whet her these sections contain statenents or remain enpty nmainly
depends on the purpose of the nodul e.

4. 1. Comment s

Conment s can be included at any position in an SMng file, except
between the characters of a single token like those of a quoted
string. However, it is RECOWENDED that all substantive descriptions
be placed within an appropriate description clause, so that the
information is available to SM ng parsers.

Strauss & Schoenwael der Experi nent al [Page 20]

RFC 3780 SM ng May 2004

Conments commence with a pair of adjacent slashes ‘//’ and end at the
end of the line.

4.2. Textual Data

Sone statenents, nanely ‘organization’, ‘contact’, ‘description’
‘reference’, ‘abnf’, ‘format’, and ‘units’, get a textual argunent.
This text, as well as representations of CctetString val ues, have to
be encl osed in double quotes. They nmay contain arbitrary characters
with the follow ng exceptional encoding rules:

A backsl ash character introduces a special character, which depends
on the character that i mediately foll ows the backsl ash

\n new line

\'t a tab character

\ " a doubl e quote

\\ a singl e backsl ash

If the text contains a line break foll owed by whitespace which is
used to indent the text according to the layout in the SMng file,
this prefixing whitespace is stripped fromthe text.

4.3. Statenents and Argunents

SMng has a very small set of basic gramar rul es based on the
concept of statenents. Each statenment starts with a | ower-case
keyword identifying the statenent, followed by a nunber (possibly
zero) of argunments. An argunent nay be quoted text, an identifier, a
val ue of any base type, a list of identifiers enclosed in parenthesis
‘“(), or a statenent block enclosed in curly braces ‘{ }’'. Since
statenent blocks are valid argunents, it is possible to nest

statenent sequences. FEach statenment is term nated by a sem col on

The core set of statenents may be extended using the SM ng
‘extension’ statenent. See Sections 6 and 11 for details.

At places where a statenment is expected, but an unknown | ower-case
word is read, those statenents MJST be skipped up to the proper
sem col on, including nested statenent bl ocks.

5. The nodul e St at enent
The ‘nodul e statenent is used as a container of all definitions of a
single SMng nmodule. It gets two argunments: an upper-case nodul e

nane and a statenent block that contains mandatory and opti onal
statenments and sections of statements in an obligatory order

Strauss & Schoenwael der Experi nent al [Page 21]

RFC 3780 SM ng May 2004

nmodul e <MODULE- NAME> {

<optional inport statenments>

<or gani zati on statenent>

<cont act statenent>

<descri ption statenent>

<optional reference statenent>
<at | east one revision statenent>

<opti onal extension statenents>
<optional typedef statenents>
<optional identity statenments>

<optional class statenents>
1

The optional ‘inport’ statements (Section 5.1) are followed by the
mandat ory ‘organi zation' (Section 5.2), ‘contact’ (Section 5.3), and
“description’” (Section 5.4) statenents and the optional ‘reference’
statenent (Section 5.5), which in turn are followed by at |east one
mandatory ‘revision’ statement (Section 5.6). The part up to this
poi nt defines the nodule’s neta information, i.e., information that
descri bes the whol e nodul e but does not define any itens used by
applications in the first instance. This part of a nodule is
followed by its main definitions, nanely SM ng extensions (Section
6), derived types (Section 7), identities (Section 8), and cl asses
(Section 9).

See the ‘nmodul eStatenent’ rule of the SMng grammar (Appendix B) for
the formal syntax of the ‘nodul e’ statenent.

5.1. The nodul e’ s inport Statenent

The optional nodule's ‘inport’ statenment is used to inport
identifiers fromexternal nodules into the |Iocal npdul e’ s nanmespace.
It gets two argunents: the name of the external nodule and a comma-
separated list of one or nore identifiers to be inmported enclosed in
par ent hesi s.

Multiple “inmport’ statenents for the same nodul e but with disjoint
lists of identifiers are allowed, though NOT RECOMVENDED. The sane
identifier fromthe same nodul e MJUST NOT be inported nultiple tines.
To inport identifiers with the sane name fromdifferent nodul es m ght
be necessary and is allowed. To distinguish

Strauss & Schoenwael der Experi nent al [Page 22]

RFC 3780 SM ng May 2004

themin the | ocal nodule, they have to be referred by qualified
nanes. Inporting identifiers not used in the [ocal nodule is NOT
RECOMVENDED.

See the “inportStatenent’ rule of the SMng grammar (Appendix B) for
the formal syntax of the ‘inport’ statenent.

5.2. The nodul e’ s organi zati on Statenent

The nmodul e’ s ‘organi zation’ statenment, which nust be present, gets
one argunment which is used to specify a textual description of the
organi zation(s) under whose auspices this nodul e was devel oped.

5.3. The nodul e’ s contact Statenent

The nmodul e’ s ‘contact’ statenent, which nust be present, gets one
argunment which is used to specify the name, postal address, telephone
nunber, and el ectronic nail address of the person to whomtechni cal
queri es concerning this nodul e should be sent.

5.4. The nodul e’ s description Statenent

The nmodul e’ s ‘description’ statenent, which nmust be present, gets one
argunment which is used to specify a high-level textual description of
the contents of this nodule.

5.5. The nodul e's reference Statenent

The nmodul e’ s ‘reference’ statenent, which need not be present, gets
one argunent which is used to specify a textual cross-reference to
some ot her docunent, either another nodul e which defines rel ated
managenent information, or sonme other docunment which provides

addi tional information relevant to this nodul e.

5.6. The nodul €' s revision Statement

The nmodule’s ‘revision’ statement is repeatedly used to specify the
editorial revisions of the nodule, including the initial revision.

It gets one argunment which is a statenment block that hol ds detail ed
information in an obligatory order. A nodule MJST have at |east one
initial ‘revision’ statement. For every editorial change, a new one
MJUST be added in front of the revisions sequence, so that al
revisions are in reverse chronol ogi cal order

See the ‘revisionStatenent’ rule of the SMng grammar (Appendi x B)
for the formal syntax of the ‘revision statenent.

Strauss & Schoenwael der Experi nent al [Page 23]

RFC 3780 SM ng May 2004

5.6.1. The revision’s date Statenent
The revision's ‘date’ statenment, which nust be present, gets one
argunment which is used to specify the date and tinme of the revision
in the format ‘ YYYY-MMDD HH MM or ‘YYYY-MW DD which inplies the
time *00:00°. The tine is always given in UTC

See the ‘date’ rule of the SMng grammar (Appendix B) for the fornal
syntax of the revision’s ‘date’ statenent.

5.6.2. The revision’s description Statenent
The revision's ‘description’ statenent, which nust be present, gets
one argunment which is used to specify a high-1level textual
description of the revision.
5.7. Usage Exanple
Consi der how a skel etal nmodul e mi ght be construct ed:
nodul e ACVE-M B {
i mport NVRG SM NG (Di splayString);

or gani zati on
"I RTF Networ k Managenent Research Group (NMRGQ";

cont act "I RTF Networ k Managenment Research G oup (NVRG
http://ww.ibr.cs.tu-bs. de/projects/nnrg/
Joe L. User
ACME, |nc.

42 Anywhere Drive
Nowher e, CA 95134
USA

Phone: +1 800 555 0815
EMai | : j oe@cne. exanpl e. cont';

description
"The nodule for entities inplenmenting the ACME protocol.

Copyright (C) The Internet Society (2004).

Al'l Rights Reserved.

This version of this MB nodule is part of RFC 3780,
see the RFC itself for legal notices.";

Strauss & Schoenwael der Experi nent al [Page 24]

RFC 3780 SM ng May 2004

revision {
dat e "2003-12-16";
description
"Initial revision, published as RFC 3780.";
1

[l ... further definitions ...
}; // end of nodul e ACVE-M B.
6. The extensi on Statenent

The ‘extension’ statenent defines new statenents to be used in the

| ocal nodule followi ng this extension statenment definition or in
external nodules that nmay inport this extension statenent definition.
The ‘extension’ statenment gets two argunents: a | ower-case extension
statenent identifier and a statenment bl ock that hol ds detail ed
extension information in an obligatory order

Ext ensi on statenent identifiers SHOULD NOT contain any upper-case
characters.

Note that the SM ng extension feature does not allow the forma
specification of the context, or argunent syntax and semantics of an
extension. 1Its only purpose is to declare the existence of an
extension and to allow a unique reference to an extension. See
Section 11 for detailed information on extensions and [RFC3781] for
mappi ngs of SMng definitions to SNWP, which is fornmally defined as
an extension.

See the ‘extensionStatenent’ rule of the SMng grammar (Appendi x B)
for the formal syntax of the ‘extension’ statenent.

6.1. The extension's status Statenent

The extension’s ‘status’ statenent, which nust be present, gets one
argunment which is used to specify whether this extension definition
is current or historic. The value ‘current’ means that the
definition is current and valid. The value ‘obsolete’ neans the
definition is obsol ete and should not be inplenmented and/or can be
renoved if previously inplenented. While the value ‘deprecated also
i ndi cates an obsolete definition, it pernits new conti nued

i npl ementation in order to foster interoperability with ol der/

exi sting inplenentations.

Strauss & Schoenwael der Experi nent al [Page 25]

RFC 3780 SM ng May 2004

6.2. The extension's description Statenent

The extension’s ‘description’ statement, which nust be present, gets
one argunment which is used to specify a high-1level textual
description of the extension statenent.

It is RECOWENDED that infornmation on the extension’s context, its
semantics, and inplenentation conditions be included. See also
Section 11.

6.3. The extension's reference Statenent

The extension’s ‘reference’ statement, which need not be present,
gets one argunment which is used to specify a textual cross-reference
to sone other docunent, either another nodul e which defines rel ated
extensi on definitions, or sonme other docunent which provides
additional infornmation relevant to this extension.

6.4. The extension’'s abnf Statenent

The extension’s ‘abnf’ statenent, which need not be present, gets one
argunent which is used to specify a formal ABNF [RFC2234] granmar
definition of the extension. This grammar can reference rul e nanes
fromthe core SMng gramuar (Appendix B).

Note that the ‘abnf’ statenent should contain only pure ABNF and no
addi ti onal text, though comrents prefixed by a semi colon are all owed
but shoul d probably be noved to the description statenment. Note that
doubl e quotes within the ABNF granmar have to be represented as ‘\"’
according to Section 4.2.

6.5. Usage Exanple

extensi on severity {
status current;
description
"The optional severity extension statenent can only
be applied to the statenent bl ock of an SMng cl ass’
event definition. If it is present it denotes the
severity level of the event in a range fromO
(emergency) to 7 (debug).";
abnf
"severityStat enent
severityKeyword

severityKeyword sep nunber optsep \";\"

\"severity\"";

Strauss & Schoenwael der Experi nent al [Page 26]

RFC 3780 SM ng May 2004

7. The typedef Statenent

The ‘typedef’ statenent defines new data types to be used in the

| ocal nodule or in external nodules. It gets two argunents: an
upper-case type identifier and a statenent block that holds detail ed
type information in an obligatory order.

Type identifiers SHOULD NOT consist of all upper-case characters and
SHOULD NOT cont ai n hyphens.

See the ‘typedefStatenment’ rule of the SMng grammuar (Appendix B) for
the formal syntax of the ‘typedef’ statenent.

7.1. The typedef’s type Statenent

The typedef’s ‘type’ statenent, which nust be present, gets one
argunment which is used to specify the type fromwhich this type is
derived. Optionally, type restrictions nmay be applied to the new
type by appendi ng subtyping information according to the rules of the
base type. See Section 3 for SMng base types and their type
restrictions.

7.2. The typedef’s default Statenent

The typedef’'s ‘default’ statenent, which need not be present, gets
one argunent which is used to specify an acceptable default val ue for
attributes of this type. A default value nmay be used when an
attribute instance is created. That is, the value is a "hint" to

i mpl enent ors.

The value of the *‘default’ statenent nust, of course, correspond to
the (probably restricted) type specified in the typedef’'s ‘type’
st at ement .

The default value of a type nay be overwitten by a default val ue of
an attribute of this type.

Note that for sonme types, default values nmake no sense.

7.3. The typedef’'s fornmat Statenent
The typedef’'s ‘format’ statenment, which need not be present, gets one
argunment which is used to give a hint as to how the value of an

i nstance of an attribute of this type night be displayed. See
Section 3.13 for a description of format specifications.

Strauss & Schoenwael der Experi nent al [Page 27]

RFC 3780 SM ng May 2004

If no format is specified, it is inherited fromthe type given in the
‘type’ statenent. On the other hand, the format specification of a
type nay be semantically refined by a fornat specification of an
attribute of this type.

7.4. The typedef’s units Statenent

The typedef’s ‘units’ statenent, which need not be present, gets one
argunment which is used to specify a textual definition of the units
associated with attributes of this type.

If no units are specified, they are inherited fromthe type given in
the ‘type’ statement. On the other hand, the units specification of
a type may be senmantically refined by a units specification of an
attribute of this type.

The units specification has to be appropriate for val ues displ ayed
according to the typedef’s format specification, if present. For
exanple, if the type defines frequency val ues of type Unsigned64
nmeasured in thousands of Hertz, the format specification should be

‘d-3 and the units specification should be ‘Hertz’ or ‘Hz'. If the
format specification would be omtted, the units specification should
be *“MIli-Hertz' or ‘nHz’. Authors of SM ng nodul es shoul d pay

attention to keep format and units specifications in sync.
Application inplenmentors MJST NOT inplenent units specifications
wi t hout inplenenting format specifications.

7.5. The typedef’s status Statenent

The typedef’'s ‘status’ statement, which nust be present, gets one
argunment which is used to specify whether this type definition is
current or historic. The value ‘current’ neans that the definition
is current and valid. The value ‘obsolete’ neans the definition is
obsol ete and shoul d not be inplenmented and/ or can be renoved if
previously inmplenmented. While the value ‘deprecated’ also indicates
an obsolete definition, it permts new continued inplenentation in
order to foster interoperability with ol der/existing inplenmentations.

Derived types SHOULD NOT be defined as ‘current’ if their underlying
type is ‘deprecated’ or ‘obsolete’. Sinilarly, they SHOULD NOT be
defined as ‘deprecated’ if their underlying type is ‘obsolete’.
Nevert hel ess, subsequent revisions of the underlying type cannot be
avoi ded, but SHOULD be taken into account in subsequent revisions of
the | ocal nodul e.

Strauss & Schoenwael der Experi nent al [Page 28]

RFC 3780 SM ng May 2004

7.6. The typedef’s description Statenent

The typedef’s ‘description’ statement, which nust be present, gets
one argunment which is used to specify a high-1level textual
description of the newy defined type.

It is RECOWENDED that all semantic definitions necessary for

i npl ementation, and to enbody any i nformation which woul d ot herw se
be comuni cated in any conmentary annotations associated with this
type definition be included.

7.7. The typedef’s reference Statenent

The typedef’'s ‘reference’ statement, which need not be present, gets
one argunent which is used to specify a textual cross-reference to
some ot her docunent, either another nodul e which defines related type
definitions, or sone other docunent which provides additional
information relevant to this type definition

7.8. Usage Exanpl es

t ypedef RptrQper Status {

type Enuneration (other(1), ok(2), rptrFailure(3),
groupFai l ure(4), portFailure(5),
general Fai l ure(6));

def aul t ot her; /'l undefined by default.

status depr ecat ed,;

description

"A type to indicate the operational state
of a repeater.”;

ref erence
"[1 EEE 802.3 Myt], 30.4.1.1.5, aRepeaterHealthState.";
1
t ypedef SnnpTransport Domain {
type Poi nter (snnpTransport Domain);
st at us current;

description
"A pointer to an SNMP transport domain identity.";

1

t ypedef Dat eAndTi ne {
type CctetString (8 | 11);
f or mat "2d-1d- 1d, 1d: 1d: 1d. 1d, 1ald: 1d"
st at us current;

description
"A date-tine specification.

Strauss & Schoenwael der Experi nent al [Page 29]

RFC 3780 SM ng May 2004

Note that if only local tine is known, then timezone
information (fields 8-10) is not present.";
ref erence
"RFC 2579, SNWPv2- TC. Dat eAndTi me. ";

3
t ypedef Frequency {
type Unsi gned64;
f or mat "d-3"
units "Hertz"
status current;
descri ption
"A w de-range frequency specification measured
in thousands of Hertz.";
3

8. The identity Statenent

The ‘identity’ statenent is used to define a new abstract and untyped
identity. |Its only purpose is to denote its nanme, senmantics, and

exi stence. An identity can be defined either fromscratch or derived
froma parent identity. The ‘identity’ statenent gets the follow ng
two argunents: The first argunment is a |ower-case identity
identifier. The second argunment is a statenment bl ock that holds
detailed identity information in an obligatory order

See the ‘identityStatenent’ rule of the SMng grammar (Appendi x B)
for the formal syntax of the ‘identity’ statement.

8.1. The identity’'s parent Statenent

The identity's ‘parent’ statenment nust be present for a derived
identity and nust be absent for an identity defined fromscratch. It
gets one argunent which is used to specify the parent identity from
which this identity shall be derived.

8.2. The identity’'s status Statenent

The identity's ‘status’ statement, which nust be present, gets one
argunment which is used to specify whether this identity definition is
current or historic. The value ‘current’ means that the definition
is current and valid. The value ‘obsolete’ neans the definition is
obsol ete and shoul d not be inplenmented and/ or can be renoved if
previously inmplenmented. While the value ‘deprecated’ also indicates
an obsolete definition, it permts new continued inplenentation in
order to foster interoperability with ol der/existing inplenmentations.

Strauss & Schoenwael der Experi nment al [Page 30]

RFC 3780 SM ng May 2004

Derived identities SHOULD NOT be defined as ‘current’ if their parent
identity is ‘deprecated’ or ‘obsolete’. Similarly, they SHOULD NOT
be defined as ‘deprecated’ if their parent identity is ‘obsolete’
Nevert hel ess, subsequent revisions of the parent identity cannot be
avoi ded, but SHOULD be taken into account in subsequent revisions of
the | ocal nodul e.

8.3. The identity’ description Statenent

The identity's ‘description’ statenent, which nmust be present, gets
one argunment which is used to specify a high-1level textual
description of the newy defined identity.

It is RECOWENDED that all semantic definitions necessary for

i npl ementation, and to enbody any i nformation which woul d ot herw se
be comuni cated in any conmentary annotations associated with this
identity definition be included.

8.4. The identity’ s reference Statenent

The identity's ‘reference’ statenent, which need not be present, gets
one argunent which is used to specify a textual cross-reference to
sone ot her docunent, either another nodul e which defines rel ated
identity definitions, or sone other docunent which provides

addi tional information relevant to this identity definition.

8.5. Usage Exanpl es

identity null {
status current;
description
"An identity used to represent null pointer values.";

b

identity snnpTransportDomain {
status current;
description
"A generic SNWP transport domain identity.";
3

identity snnmpUDPDomai n {
parent snnpTransport Donai n;
status current;
description
"The SNWMP over UDP transport donain.";
}

Strauss & Schoenwael der Experi nent al [Page 31]

RFC 3780 SM ng May 2004

9. The class Statenent

The ‘class’ statenent is used to define a new class that represents a
container of related attributes and events (Section 9.2, Section
9.4). A class can be defined either fromscratch or derived froma
parent class. A derived class inherits all attributes and events of

t he parent class and can be extended by additional attributes and
event s.

The ‘class’ statenent gets the following two argunments: The first
argunment is an upper-case class identifier. The second argunent is a
statenent block that holds detailed class information in an
obligatory order

See the ‘classStatenent’ rule of the SMng grammar (Appendix B) for
the formal syntax of the ‘class’ statenent.

9.1. The class’ extends Statenent

The class’ ‘extends’ statenent nmust be present for a class derived
froma parent class and nust be absent for a class defined from
scratch. It gets one argunent which is used to specify the parent
class fromwhich this class shall be derived.

9.2. The class’ attribute Statenent

The class’ ‘attribute’ statement, which can be present zero, one or
multiple times, gets two argunents: the attribute nane and a
statenment bl ock that holds detailed attribute information in an

obl i gatory order

9.2.1. The attribute’ s type Statenent

The attribute’s ‘type’ statenent must be present. It gets at |east
one argunent which is used to specify the type of the attribute:
either a type nane or a class name. |In case of a type nane, it may
be restricted by a second argunment according to the restriction rules
described in Section 3.

9.2.2. The attribute's access Statenent

The attribute’s ‘access’ statenent nust be present for attributes
typed by a base type or derived type, and nmust be absent for
attributes typed by a class. It gets one argunent which is used to
specify whether it nmakes sense to read and/or wite an instance of
the attribute, or to include its value in an event. This is the
maxi mal | evel of access for the attribute. This maximal |evel of
access i s independent of any adm nistrative authorization policy.

Strauss & Schoenwael der Experi nent al [Page 32]

RFC 3780 SM ng May 2004

The value ‘readwite’ indicates that read and wite access makes
sense. The value ‘readonly’ indicates that read access nakes sense,
but wite access is never possible. The value ‘eventonly’ indicates
an object which is accessible only via an event.

These values are ordered, fromleast to greatest access |evel
‘“eventonly’, ‘readonly’, ‘readwite’

9.2.3. The attribute's default Statenent

The attribute’s ‘default’ statement need not be present for
attributes typed by a base type or derived type, and nust be absent
for attributes typed by a class. It gets one argunent which is used
to specify an acceptable default value for this attribute. A default
val ue may be used when an attribute instance is created. That is,
the value is a "hint" to inplenentors.

The value of the *‘default’ statenent nust, of course, correspond to
the (probably restricted) type specified in the attribute' s ‘type’
st at ement .

The attribute's default value overrides the default value of the
underlying type definition if both are present.

9.2.4. The attribute's format Statenent

The attribute’s ‘fornmat’ statenent need not be present for attributes
typed by a base type or derived type, and nmust be absent for
attributes typed by a class. It gets one argunent which is used to
give a hint as to how the value of an instance of this attribute

m ght be displayed. See Section 3.13 for a description of format
speci fications.

The attribute’s format specification overrides the fornat
specification of the underlying type definition if both are present.

9.2.5. The attribute’'s units Statenent

The attribute’s ‘units’ statenment need not be present for attributes
typed by a base type or derived type, and must be absent for

attributes typed by a class. It gets one argunent which is used to
specify a textual definition of the units associated with this
attribute.

The attribute’'s units specification overrides the units specification
of the underlying type definition if both are present.

Strauss & Schoenwael der Experi nment al [Page 33]

RFC 3780 SM ng May 2004

The units specification has to be appropriate for val ues displ ayed
according to the attribute’s format specification if present. For
exanple, if the attribute represents a frequency val ue of type

Unsi gned64 neasured in thousands of Hertz, the format specification
should be ‘d-3" and the units specification should be ‘Hertz' or
‘“Hz'. If the format specification would be onmitted, the units
specification should be “MIli-Hertz' or ‘nHz'. Authors of SM ng
nmodul es shoul d pay attention to keep fornmat and units specifications
of type and attribute definitions in sync. Application inplenentors
MUST NOT i npl ement units specifications wi thout inplenenting fornat
speci fications.

9.2.6. The attribute's status Statenent

The attribute’s ‘status’ statenent nust be present. It gets one
argunment which is used to specify whether this attribute definition
is current or historic. The value ‘current’ means that the
definition is current and valid. The value ‘obsolete’ neans the
definition is obsol ete and should not be inpl enmented and/or can be
renoved if previously inplenented. While the value ‘deprecated also
i ndi cates an obsolete definition, it pernits new conti nued

i npl enentation in order to foster interoperability with ol der/

exi sting inplenentations.

Attributes SHOULD NOT be defined as ‘current’ if their type or their

containing class is ‘deprecated’ or ‘obsolete’. Simlarly, they
SHOULD NOT be defined as ‘deprecated if their type or their
containing class is ‘obsolete’. Neverthel ess, subsequent revisions

of used type definition cannot be avoi ded, but SHOULD be taken into
account in subsequent revisions of the |ocal nodule.

9.2.7. The attribute’ s description Statenent

The attribute’s ‘description’ statement, which nust be present, gets
one argunment which is used to specify a high-1level textual
description of this attribute.

It is RECOWENDED that all semantic definitions necessary for the
i mpl enentation of this attribute be included.

9.2.8. The attribute's reference Statenent

The attribute’s ‘reference’ statement, which need not be present,
gets one argunment which is used to specify a textual cross-reference
to sone other docunent, either another nodul e which defines rel ated
attribute definitions, or sonme other docunent which provides
additional infornmation relevant to this attribute definition.

Strauss & Schoenwael der Experi nment al [Page 34]

RFC 3780 SM ng May 2004

9.3. The class’ unique Statenent

The class’ ‘unique’ statenment, which need not be present, gets one
argunent that specifies a comma-separated list of attributes of this

class, enclosed in parenthesis. |If present, this list of attributes
makes up a unique identification of all possible instances of this
class. It can be used as a unique key in underlying protocols.

If the list is enpty, the class should be regarded as a scal ar cl ass
with only a single instance.

If the ‘unique statenent is not present, the class is not neant to
be instantiated directly, but to be contained in other classes or the
parent class of other refining classes.

If present, the attribute list MJST NOT contain any attribute nore
than once and the attributes shoul d be ordered where appropriate so
that the attributes that are nost significant in nost situations
appear first.

9.4. The class’ event Statenent

The class’ ‘event’ statenent is used to define an event related to an
i nstance of this class that can occur asynchronously. It gets two
argunents: a |ower-case event identifier and a statenment bl ock that
hol ds detailed information in an obligatory order.

See the ‘eventStatenent’ rule of the SMng grammar (Appendix B) for
the formal syntax of the ‘event’ statenent.

9.4.1. The event’'s status Statenent

The event’s ‘status’ statenent, which nust be present, gets one
argunment which is used to specify whether this event definition is
current or historic. The value ‘current’ means that the definition
is current and valid. The value ‘obsolete’ neans the definition is
obsol ete and shoul d not be inplenmented and/ or can be renoved if
previously inmplenmented. While the value ‘deprecated’ also indicates
an obsolete definition, it permts new continued inplenentation in
order to foster interoperability with ol der/existing inplenmentations.

9.4.2. The event’s description Statenent
The event’s ‘description’ statement, which nust be present, gets one

argunment which is used to specify a high-level textual description of
this event.

Strauss & Schoenwael der Experi nment al [Page 35]

RFC 3780 SM ng May 2004

It is RECOWENDED that all semantic definitions necessary for the

i npl enentation of this event be included. In particular, which

i nstance of the class is associated with an event of this type SHOULD
be docunent ed.

9.4.3. The event's reference Statenent

The event’'s ‘reference’ statenment, which need not be present, gets
one argunment which is used to specify a textual cross-reference to
some ot her docunent, either another nodul e which defines rel ated
event definitions, or sone other docunent which provides additional
information relevant to this event definition

9.5. The class’ status Statenent

The class’ ‘status’ statenent, which nust be present, gets one
argunment which is used to specify whether this class definition is
current or historic. The value ‘current’ means that the definition
is current and valid. The value ‘obsolete’ neans the definition is
obsol ete and shoul d not be inplenmented and/ or can be renoved if
previously inmplenmented. While the value ‘deprecated’ also indicates
an obsolete definition, it permts new continued inplenentation in
order to foster interoperability with ol der/existing inplenmentations.

Derived classes SHOULD NOT be defined as ‘current’ if their parent
class is ‘deprecated’ or ‘obsolete’. Sinmlarly, they SHOULD NOT be
defined as ‘deprecated’ if their parent class is ‘obsolete’.
Nevert hel ess, subsequent revisions of the parent class cannot be
avoi ded, but SHOULD be taken into account in subsequent revisions of
the | ocal nodul e.

9.6. The class’ description Statenent

The class’ ‘description” statenent, which nust be present, gets one
argunment which is used to specify a high-level textual description of
the newy defined cl ass.

It is RECOWENDED that all semantic definitions necessary for

i npl eentation, and to enbody any information which woul d ot herw se
be comuni cated in any conmentary annotations associated with this
class definition be included.

Strauss & Schoenwael der Experi nment al [Page 36]

RFC 3780 SM ng May 2004

9.7. The class’ reference Statenent

The class’ ‘reference’ statenent, which need not be present, gets one
argunment which is used to specify a textual cross-reference to sone
ot her docunent, either another nodul e which defines related class
definitions, or sone other docunent which provides additional
information relevant to this class definition

9.8. Usage Exanple

Consi der how an event might be described that signals a status change
of an interface:

class Interface {

...

attribute speed {
type Gauge32;
access readonl y;
units "bps";
st at us current;

descri ption
"An estimate of the interface’'s current bandw dth
in bits per second.";

1

...

attri bute adni nStatus {
type Admi nSt at us;
access readwrite;
st at us current;

descri ption
"The desired state of the interface.";

b

attri bute operStatus {
type Oper St at us;
access readonl y;
st at us current;

descri ption
"The current operational state of the interface."”;
3

event |inkDown {

st at us current;

description
"A linkDown event signifies that the ifOperStatus
attribute for this interface instance is about to
enter the down state from sonme other state (but not
fromthe notPresent state). This other state is
i ndi cated by the included value of ifOperStatus.";

Strauss & Schoenwael der Experi nment al [Page 37]

RFC 3780 SM ng May 2004

10.

b

status current;
descri ption
"A physical or |ogical network interface.";

1
Ext endi ng a Modul e

As experience is gained with a nodule, it may be desirable to revise
that nmodul e. However, changes are not allowed if they have any
potential to cause interoperability problens between an

i npl enentation using an original specification and an inplenmentation
usi ng an updat ed specification(s).

For any change, sone statenents near the top of the nodule MJST be
updated to include information about the revision: specifically, a
new ‘revision statenment (Section 5.6) rnust be included in front of
the ‘revision’ statenents. Furthernore, any necessary changes MJST
be applied to other statenents, including the ‘organization’ and
‘contact’ statements (Section 5.2, Section 5.3).

Note that any definition contained in a nodule is available to be

i nported by any other nmodule, and is referenced in an ‘inport’
statenent via the nodul e name. Thus, a nodul e name MJUST NOT be
changed. Specifically, the nmodule nane (e.g., ‘ACME-M B in the
exanpl e of Section 5.7) MJUST NOT be changed when revising a nodul e
(except to correct typographical errors), and definitions MJST NOT be
nmoved from one nodul e to anot her

Al so note that obsolete definitions MUST NOT be renoved from nodul es
since their identifiers may still be referenced by other nodul es.

A definition may be revised in any of the follow ng ways:

o In ‘typedef’ statenment blocks, a ‘type’ statenent containing an
“Enuneration’ or ‘Bits’ type may have new named nunbers added.

o In ‘typedef’ statement blocks, the value of a ‘type’ statenent may
be replaced by another type if the new type is derived (directly
or indirectly) fromthe same base type, has the sanme set of
val ues, and has identical semantics.

o In "attribute’ statements where the ‘type’ sub-statenment specifies
a class, the class may be replaced by another class if the new
class is derived (directly or indirectly) fromthe base class and
bot h cl asses have identical semantics.

Strauss & Schoenwael der Experi nment al [Page 38]

RFC 3780 SM ng May 2004

11.

o In "attribute’ statements where the ‘type’ sub-statenent specifies
a base type, a defined type, or an inplicitly derived type (i.e.
not a class), that type nmay be replaced by another type if the new
type is derived (directly or indirectly) fromthe sanme base type,
has the sane set of values, and has identical semantics.

o In any statenent bl ock, a ‘status’ statenent value of ‘current’

may be revised as ‘deprecated’ or ‘obsolete’. Sinmlarly, a
‘status’ statenent value of ‘deprecated’ nmmy be revised as
‘obsolete’. Wen making such a change, the ‘description’

st at enent SHOULD be updated to explain the rationale.

o In ‘typedef’ and ‘attribute’ statement blocks, a ‘default’
statenent may be added or updat ed.

0o In ‘“typedef’ and ‘attribute’ statenent blocks, a ‘units’ statenent
may be added.

0 A class may be augnmented by addi ng new attri butes.

o In any statenent block, clarifications and additional informtion
may be included in the ‘description statenent.

o In any statenment block, a ‘reference’ statement may be added or
updat ed.

o Entirely new extensions, types, identities, and classes may be
defined, using previously unassigned identifiers.

O herwise, if the semantics of any previous definition are changed
(i.e., if a non-editorial change is made to any definition other than
those specifically all owed above), then this MJST be achi eved by a
new definition with a newidentifier. |In case of a class where the
semantics of any attributes are changed, the new class can be defined
by derivation fromthe old class and refining the changed attributes.

Not e that changing the identifier associated with an existing
definition is considered a senanti c change, as these strings nay be
used in an ‘inport’ statenent.

SM ng Language Extensibility

While the core SMng | anguage has a well defined set of statenents
(Section 5 through Section 9.4) that are used to specify those
aspects of managenent information commonly regarded as necessary
wi t hout managenent protocol specific information, there may be

Strauss & Schoenwael der Experi nment al [Page 39]

RFC 3780 SM ng May 2004

further information people wish to express. Describing additiona
information informally in description statenents has a di sadvant age
in that this information cannot be parsed by any program

SM ng all ows nodules to include statenents that are unknown to a
parser but fulfil some core gramrmar rules (Section 4.3).

Furthernore, additional statenments may be defined by the ‘extension
statenent (Section 6). Extensions can be used in the |ocal nodule or
in other nodules that inport the extension. This has sone

advant ages:

o0 A parser can differentiate between statements known as extensions
and unknown statenments. This enables the parser to conpl ain about
unknown statenments, e.g., due to typos.

o If an extension's definition contains a formal ABNF granmmar
definition and a parser is able to interpret this ABNF definition,
this enables the parser to also conplain about the wong usage of
an extension.

o Since there mght be some conmon need for extensions, there is a
relatively high probability of extension nane collisions
originated by different organizations, as long as there is no
st andar di zed extension for that purpose. The requirenment to
explicitly inmport extension statenents allows those extensions to
be di sti ngui shed.

0 The supported extensions of an SMng inplenentation, e.g., an
SM ng nodul e conpiler, can be clearly expressed.

The only formal effect of an extension statenent definition is to
declare its existence and status, and optionally its ABNF gramar.
Al'l additional aspects SHOULD be described in the ‘description’
stat enent :

o The detailed semantics of the new statenment SHOULD be descri bed.

0 The contexts in which the new statenment can be used SHOULD be
described, e.g., a new statenent nay be designed to be used only
in the statenent block of a nodule, but not in other nested
statenent blocks. Qhers may be applicable in nmultiple contexts.
In addition, the point in the sequence of an obligatory order of
ot her statenents, where the new statenent may be inserted, m ght
be prescri bed.

o The circunstances that nmake the new statenment nmandatory or
opti onal SHOULD be descri bed.

Strauss & Schoenwael der Experi nment al [Page 40]

RFC 3780 SM ng May 2004

12.

13.

o The syntax of the new statenment SHOULD at | east be descri bed
informally, if not supplied formally in an ‘abnf’ statenent.

o It might be reasonable to give sonme suggestions under which
conditions the inplenentation of the new statenent is adequate and
how it could be integrated into existent inplenentations.

Sone possi bl e extension applications are:

o The formal mapping of SMng definitions into the SNVP [RFC3781]
framework is defined as an SM ng extension. O her nappings nay
follow in the future.

o Inlined annotations to definitions. For exanple, a vendor may
wi sh to describe additional information to class and attribute
definitions in private nodules. An exanple are severity levels of
events in the statenent block of an ‘event’ statenent.

0o Arbitrary annotations to external definitions. For exanple, a
vendor may w sh to describe additional information to definitions
in a "standard" module. This allows a vendor to inplenment
"standard" nodul es as well as additional private features, wthout
redundant nodul e definitions, but on top of "standard" nodul e
definitions.

Security Considerations

Thi s docunent defines a | anguage with which to wite and read
descri ptions of managenent information. The |anguage itself has no
security inpact on the Internet.

Acknow edgenent s

Since SMng started as a close successor of SMv2, sone paragraphs
and phrases are directly taken fromthe SMv2 specifications

[RFC2578], [RFC2579], [RFC2580] written by Jeff Case, Keith

McCl oghrie, David Perkins, Marshall T. Rose, Juergen Schoenwael der
and Steven L. Wl dbusser.

The authors would |like to thank all participants of the 7th NVRG
nmeeting held in Schloss Kl ei nheubach from 6-8 Septenber 2000, which
was a major step towards the current status of this nmeno, nanely
Hei ko Dassow, David Durham Keith MC oghrie, and Bert Wj nen.

Furthernmore, several discussions within the SM NG Wrking G oup
reflected experience with SMv2 and influenced this specification at
some points.

Strauss & Schoenwael der Experi nent al [Page 41]

RFC 3780 SM ng May 2004
14. References
14.1. Nornmative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.
[RFC2234] Crocker, D., Ed. and P. Overell, "Augnmented BNF for Syntax
Specifications: ABNF', RFC 2234, Novenber 1997.
14.2. Informative References
[RFC3216] Elliott, C, Harrington, D., Jason, J., Schoenwael der, J.,
Strauss, F. and W Wiss, "SMng Objectives", RFC 3216
Decenber 2001
[RFC3781] Strauss, F. and J. Schoenwael der, "Next GCeneration
Structure of Managenent Information (SMng) Mappings to
the Sinple Network Managenment Protocol (SNWP)", RFC 3781
May 2004.
[RFC2578] M oghrie, K, Perkins, D. and J. Schoenwael der,
"Structure of Managenent Information Version 2 (SMv2)",
STD 58, RFC 2578, April 1999.
[RFC2579] MO oghrie, K, Perkins, D. and J. Schoenwael der, "Textua
Conventions for SMv2", STD 59, RFC 2579, April 1999.
[RFC2580] McC oghrie, K, Perkins, D. and J. Schoenwael der,
"Conformance Statenents for SMv2", STD 60, RFC 2580,
April 1999.
[RFC3159] M oghrie, K, Fine, M, Seligson, J., Chan, K, Hahn
S., Sahita, R, Smith, A and F. Reichneyer, "Structure of
Policy Provisioning Information (SPPI)", RFC 3159, August
2001.
[RFC1155] Rose, M and K MO oghrie, "Structure and ldentification
of Management Information for TCP/IP-based Internets", STD
16, RFC 1155, May 1990.
[RFC1212] Rose, M and K Md oghrie, "Concise MB Definitions", STD
16, RFC 1212, March 1991.
[RFC1215] Rose, M, "A Convention for Defining Traps for use with

the SNWP', RFC 1215, March 1991

Strauss & Schoenwael der Experi nent al [Page 42]

RFC 3780

[ASN1]

[RFC3411]

[| EEE754]

[RFC3629]

[RFC3084]

SM ng May 2004

International Organization for Standardizati on,
"Specification of Abstract Syntax Notation One (ASN. 1)",
International Standard 8824, Decenber 1987.

Harrington, D., Presuhn, R and B. Wjnen, "An
Architecture for Describing Sinple Network Managenent
Prot ocol (SNWP) Managenent Franeworks", STD 62, RFC 3411,
Decenber 2002.

Institute of Electrical and El ectronics Engineers, "IEEE
Standard for Binary Floating-Point Arithmetic", ANSI/I|EEE
St andard 754-1985, August 1985.

Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

Chan, K., Seligson, J., Durham D., G, S., Mdoghrie,
K., Herzog, S., Reichneyer, F., Yavatkar, R and A Snmth,
"COPS Usage for Policy Provisioning", RFC 3084, March
2001.

Strauss & Schoenwael der Experi nment al [Page 43]

RFC 3780 SM ng May 2004

Appendi x A. NVRG SM NG Modul e

Most SM ng nodules are built on top of the definitions of some
commonly used derived types. The definitions of these derived types
are contained in the NVRG SM NG nodul e which is defined below. Its
derived types are generally applicable for nodeling all areas of
managenent information. Anong these derived types are counter types,
string types, and date and tinme rel ated types.

This nodule is derived from RFC 2578 [RFC2578] and RFC 2579
[RFC2579] .

nodul e NVRG- SM NG {
organi zati on "I RTF Networ k Managenent Research Group (NVMRG";

cont act "I RTF Networ k Managenment Research G oup (NVRG
http://ww. ibr.cs.tu-Dbs. de/projects/nnrg/

Frank Strauss

TU Braunschwei g

Muehl enpf or dt strasse 23

38106 Braunschweig

Ger many

Phone: +49 531 391 3266

EMai | : strauss@br.cs.tu-bs. de

Juer gen Schoenwael der
International University Brenen
P. O Box 750 561

28725 Brenen

Ger many

Phone: +49 421 200 3587

EMai | : j.schoenwael der @ u- brenen. de";
description "Core type definitions for SMng. Several

type definitions are SM ng versi ons of
simlar SMv2 or SPPI definitions.

Copyright (C) The Internet Society (2004).
Al Rights Reserved.

This version of this module is part of
RFC 3780, see the RFC itself for full

| egal notices.";

Strauss & Schoenwael der Experi nment al [Page 44]

RFC 3780 SM ng May 2004

revision {

dat e "2003-12-16";

description "lInitial revision, published as RFC 3780.";
}s

typedef Gauge32 {
type Unsi gned32
descri ption
"The Gauge32 type represents a non-negative integer,
whi ch may increase or decrease, but shall never
exceed a maxi mum val ue, nor fall below a m ni mum
val ue. The maxi mum val ue can not be greater than
27"32-1 (4294967295 decimal), and the m ni mum val ue
can not be snmaller than 0. The value of a Gauge32
has its maxi num val ue whenever the infornmation
bei ng nodel ed is greater than or equal to its
maxi mum val ue, and has its m ni mum val ue whenever
the information being nodeled is smaller than or
equal to its mnimumvalue. If the information
bei ng nodel ed subsequently decreases bel ow
(i ncreases above) the maxi mum (m ni mun) val ue, the
Gauge32 al so decreases (increases).";
ref erence
"RFC 2578, Sections 2. and 7.1.7.";

H

typedef Counter32 {
type Unsi gned32
descri ption
"The Counter32 type represents a non-negative integer
whi ch nonotonically increases until it reaches a
maxi mum val ue of 2732-1 (4294967295 decinmal), when it
wraps around and starts increasing again from zero.

Counters have no defined ‘initial’ value, and thus, a
singl e value of a Counter has (in general) no information
content. Discontinuities in the nonotonically increasing
value nornmally occur at re-initialization of the
managenent system and at other tinmes as specified in the
description of an attribute using this type. |If such
other tines can occur, for exanple, the creation of a
class instance that contains an attribute of type
Counter32 at times other than re-initialization, then a
corresponding attribute should be defined, with an
appropriate type, to indicate the |ast discontinuity.
Exanpl es of appropriate types include: TinmeStanp32

Ti meSt anp64, Dat eAndTi ne, Ti nmeTi cks32 or Ti neTi cks64
(other types defined in this nodule).

Strauss & Schoenwael der Experi nment al [Page 45]

RFC 3780 SM ng May 2004

The value of the access statenment for attributes with
a type val ue of Counter32 should be either ‘readonly’
or ‘eventonly’.

A default statenent should not be used for attributes
with a type value of Counter32.";

ref erence
"RFC 2578, Sections 2. and 7.1.6.";

H

typedef Gauge64 {

type Unsi gned64;

descri ption
"The Gauge64 type represents a non-negative integer,
whi ch may increase or decrease, but shall never
exceed a maxi mum val ue, nor fall below a m ni mum
val ue. The maxi mum val ue can not be greater than
2"64-1 (18446744073709551615), and the m ni num val ue
can not be snmaller than 0. The value of a Gauge64
has its maxi num val ue whenever the infornation
bei ng nodel ed is greater than or equal to its
maxi mum val ue, and has its m ni mum val ue whenever
the infornmation being nodeled is smaller than or
equal to its minimumvalue. If the information
bei ng nodel ed subsequently decreases bel ow
(i ncreases above) the maxi mum (m ni mun) val ue, the
Gauge64 al so decreases (increases).";

H

typedef Counter64 {
type Unsi gned64;
descri ption
"The Counter64 type represents a non-negative integer
whi ch nonotonically increases until it reaches a
maxi num val ue of 2764-1 (18446744073709551615), when
it waps around and starts increasing again from zero.

Counters have no defined ‘initial’ value, and thus, a
single value of a Counter has (in general) no
information content. Discontinuities in the
nonot oni cal |l y increasing value normally occur at
re-initialization of the nanagenent system and at
other tines as specified in the description of an
attribute using this type. |f such other tines can
occur, for exanple, the creation of a class

i nstance that contains an attribute of type Counter32
at tinmes other than re-initialization, then

a corresponding attribute should be defined, with an

Strauss & Schoenwael der Experi nment al [Page 46]

RFC 3780 SM ng May 2004

appropriate type, to indicate the |ast discontinuity.
Exanpl es of appropriate types include: TinmeStanp32

Ti meSt anp64, Dat eAndTi ne, Ti nmeTi cks32 or TineTi cks64
(other types defined in this nodule).

The value of the access statenment for attributes with
a type val ue of Counter64 should be either ‘readonly’
or ‘eventonly’.

A default statenent should not be used for attributes
with a type value of Counter64.";

ref erence
"RFC 2578, Sections 2. and 7.1.10.";

H

typedef Opaque {
type Cctet String;
stat us obsol et g;
descri ption
"rxkxxxx TH'S TYPE DEFINITION |'S OBSOLETE *******

The Opaque type is provided solely for
backwar d- conpati bility, and shall not be used for
new y-defined attributes and derived types.

The Opaque type supports the capability to pass
arbitrary ASN. 1 syntax. A value is encoded using
the ASN. 1 Basic Encoding Rules into a string of
octets. This, in turn, is encoded as an
CctetString, in effect ‘doubl e-wapping the
original ASN. 1 val ue.

Note that a conforming inplenentation need only be
abl e to accept and recogni ze opaquel y- encoded dat a.
It need not be able to unwap the data and then
interpret its contents.

A requirenent on ‘standard’ nodules is that no
attri bute nmay have a type val ue of Opaque and no
type may be derived fromthe Opaque type.";
reference
"RFC 2578, Sections 2. and 7.1.9.";

H

typedef | pAddress {
type CctetString (4);
st at us depr ecat ed;
descri ption

Strauss & Schoenwael der Experi nment al [Page 47]

RFC 3780 SM ng May 2004

Mrxxkxkx TH' S TYPE DEFI NI TION | S DEPRECATED *******

The | pAddress type represents a 32-bit Internet
| Pv4 address. It is represented as an QctetString
of length 4, in network byte-order.

Note that the | pAddress type is present for
hi storical reasons.";
ref erence

"RFC 2578, Sections 2. and 7.1.5.";

b
typedef TinmeTicks32 {
type Unsi gned32
descri ption
"The TineTi cks32 type represents a non-negative integer
whi ch represents the tinme, nodul o 232 (4294967296
decimal), in hundredths of a second between two epochs.
When attributes are defined which use this type, the
description of the attribute identifies both of the
ref erence epochs.
For exanple, the TineStanp32 type (defined in this
nodul e) is based on the TinmeTicks32 type.";
reference
"RFC 2578, Sections 2. and 7.1.8.";
b
typedef TinmeTicks64 {
type Unsi gned64;
descri ption
"The Ti nmeTi cks64 type represents a non-negative integer
whi ch represents the tinme, nodul o 264
(18446744073709551616 decimal), in hundredths of a second
bet ween two epochs. When attributes are defined which use
this type, the description of the attribute identifies
both of the reference epochs.
For exanple, the TineStanp64 type (defined in this
nodul e) is based on the Ti meTi cks64 type.";
b
typedef Ti meStanp32 {

type Ti meTi cks32

descri ption
"The val ue of an associated Ti nmeTi cks32 attribute at
whi ch a specific occurrence happened. The specific
occurrence nust be defined in the description of any

Strauss & Schoenwael der Experi nment al [Page 48]

RFC 3780

H

SM ng May 2004
attribute defined using this type. Wen the specific
occurrence occurred prior to the last tine the
associ ated Ti meTi cks32 attribute was zero, then the
Ti meSt anp32 value is zero. Note that this requires al
Ti meSt anp32 values to be reset to zero when the val ue of
the associated TineTi cks32 attribute reaches 497+ days
and wraps around to zero.

The associ ated TinmeTi cks32 attribute should be specified
in the description of any attribute using this type.
If no TinmeTicks32 attribute has been specified, the
default scalar attribute sysUpTine is used.";
ref erence
"RFC 2579, Section 2.";

typedef TinmeStanp64 {

H

type Ti meTi cks64;
descri ption

"The val ue of an associated Ti neTi cks64 attribute at which
a specific occurrence happened. The specific occurrence
nmust be defined in the description of any attribute
defined using this type. When the specific occurrence
occurred prior to the last tine the associ ated Ti meTi cks64
attribute was zero, then the TineStanp64 value is zero.
The associ ated Ti meTi cks64 attribute nust be specified in
the description of any attribute using this
type. TinmeTicks32 attributes nmust not be used as
associ ated attributes."”;

typedef Tinmelnterval 32 {

H

type Integer32 (0..2147483647);
descri ption

"A period of tinme, neasured in units of 0.01 seconds.

The Tinmelnterval 32 type uses Integer32 rather than
Unsi gned32 for conpatibility with RFC 2579.";

r ef erence

"RFC 2579, Section 2.";

typedef Ti el nterval 64 {

type | nt eger 64;
descri ption

"A period of tinme, neasured in units of 0.01 seconds.
Not e that negative values are allowed.";

Strauss & Schoenwael der Experi nment al [Page 49]

RFC 3780 SM ng May 2004

typedef DateAndTi ne {

type CctetString (8 | 11);
def aul t 0x0000000000000000000000;
f or mat "2d-1d-1d, 1d: 1d: 1d. 1d, 1ald: 1d"

descri ption
"A date-tine specification.

field octets contents range
1 1-2 year* 0..65535
2 3 nont h 1..12 | O
3 4 day 1..31 | O
4 5 hour 0..23
5 6 m nut es 0..59
6 7 seconds 0..60
(use 60 for | eap-second)
7 8 deci - seconds 0..9
8 9 direction from UTC B A
9 10 hours from UTC* 0..13
10 11 m nutes from UTC 0..59
* Not es:

- the value of year is in big-endian encoding
- daylight saving tine in New Zealand is +13

For exanpl e, Tuesday May 26, 1992 at 1:30:15 PM EDT woul d
be di spl ayed as:

1992-5-26, 13: 30: 15.0,-4: 0

Note that if only local tine is known, then timezone
information (fields 8-10) is not present.

The two special values of 8 or 11 zero bytes denote an
unknown date-tine specification.";
reference
"RFC 2579, Section 2.";

1
typedef TruthVal ue {
type Enuneration (true(l), false(2));
descri ption
"Represents a bool ean val ue.";
ref erence
"RFC 2579, Section 2.";
1

typedef PhysAddress ({

Strauss & Schoenwael der Experi nment al [Page 50]

RFC 3780 SM ng May 2004

type Cctet String;
f or mat "Ax: "
descri ption
"Represents nedia- or physical-I|evel addresses.";
ref erence
"RFC 2579, Section 2.";

b
typedef MacAddress {
type CctetString (6);
f or mat "Ax: "
descri ption
"Represents an | EEE 802 MAC address represented in the
‘canoni cal’ order defined by | EEE 802.1a, i.e., as if it
were transmtted |l east significant bit first, even though
802.5 (in contrast to other 802.x protocols) requires MAC
addresses to be transmitted nost significant bit first.";
reference
"RFC 2579, Section 2.";
b

/1 The DisplayString definition bel ow does not inpose a size
/'l restriction and is thus not the same as the DisplayString
/1 definition in RFC 2579. The DisplayString255 definition is
/1 provided for mapping purposes.

typedef DisplayString {

type Cctet String;

f or mat "la";

descri ption
"Represents textual information taken fromthe NVT ASCI
character set, as defined in pages 4, 10-11 of RFC 854.
To sunmari ze RFC 854, the NVT ASCI| repertoire specifies:

- the use of character codes 0-127 (decinal)

- the graphics characters (32-126) are interpreted as
US ASCI

- NUL, LF, CR BEL, BS, HT, VT and FF have the speci al
nmeani ngs specified in RFC 854

- the other 25 codes have no standard interpretation
- the sequence 'CR LF' neans new i ne

- the sequence 'CR NUL' neans carriage-return

Strauss & Schoenwael der Experi nent al [Page 51]

RFC 3780 SM ng May 2004

- an 'LF not preceded by a 'CR neans noving to the
same colum on the next line.

- the sequence 'CR x’ for any x other than LF or NUL is
illegal. (Note that this also neans that a string may
end with either "CRLF or "CR NUL', but not with CR)

b
typedef DisplayString255 {
type Di splayString (0..255);
descri ption
"A DisplayString with a maxi mum | ength of 255 characters.
Any attribute defined using this syntax may not exceed 255
characters in | ength.
The Di splayString255 type has the sane semantics as the
Di splayString textual convention defined in RFC 2579.";
reference
"RFC 2579, Section 2.";
b

[/ The Utf8String and Ut f8String255 definitions below facilitate
/1 internationalization. The definition is consistent with the
/1 definition of SnnpAdmi nString in RFC 2571

typedef Utf8String {
type Cctet String;
f or mat " 65535t "; Il is there a better way ?
descri ption
"A human readabl e string represented using the ISOIEC IS
10646-1 character set, encoded as an octet string using
the UTF-8 transformation format described in RFC 3629.

Since additional code points are added by anmendnments to
the 10646 standard fromtine to tinme, inplenentations mnust
be prepared to encounter any code point from 0x00000000 to
ox7fffffff. Byte sequences that do not correspond to the
valid UTF-8 encodi ng of a code point or are outside this
range are prohibited.

The use of control codes shoul d be avoided. Wien it is
necessary to represent a newine, the control code
sequence CR LF shoul d be used.

The use of leading or trailing white space should be
avoi ded.

Strauss & Schoenwael der Experi nent al [Page 52]

RFC 3780 SM ng May 2004

For code points not directly supported by user interface
hardware or software, an alternative nmeans of entry and
di spl ay, such as hexadeci mal, may be provided.

For information encoded in 7-bit US-ASClII, the UTF-8
encoding is identical to the US-ASCI| encoding.

UTF-8 may require nmultiple bytes to represent a single
character / code point; thus the length of a Uf8String in
octets may be different fromthe nunber of characters
encoded. Sinilarly, size constraints refer to the nunber
of encoded octets, not the nunmber of characters
represented by an encoding.";

1
typedef Utf8String255 {
type U f8String (0..255);
f or mat "255t";
descri ption
"A Uf8String with a maxi mum | ength of 255 octets. Note
that the size of an Uf8String is neasured in octets, not
characters.";
1

identity null {
descri ption
"An identity used to represent null pointer values.";

b
b
Appendi x B. SM ng ABNF G anmar
The SM ng grammar conforns to the Augnented Backus- Naur Form (ABNF)
[RFC2234] .

sm ng. abnf -- SMng grammar in ABNF notation (RFC 2234).

.. @#) $d: sming. abnf,v 1.33 2003/10/23 19:31:55 strauss Exp $
Copyright (C) The Internet Society (2004). Al Ri ghts Reserved.

smingFile = optsep *(nodul eSt at enent opt sep)

;. Statenent rul es.

Strauss & Schoenwael der Experi nment al [Page 53]

RFC 3780 SM ng May 2004

nodul eSt at enment = nmodul eKeyword sep ucldentifier optsep
"{" stntsep
*(inportStatenent stntsep)
or gani zati onSt at enent st ntsep
cont act St at enent stntsep
descri ptionSt at enent stntsep
*1(ref erenceSt at ement stntsep)
1*(revisionStatenent stntsep)
*(extensi onSt at enent st nt sep)
*(typedef St at enent st nt sep)
*(identityStatenment stntsep)
*(cl assSt at enent st nt sep)

"1" optsep ";"

ext ensi onSt at enent ext ensi onKeyword sep Icldentifier optsep
"{" stntsep
statusStatenment stntsep
descri ptionSt at enent stntsep
*1(ref erenceSt at ement stntsep)

*1(abnf St at enment st nt sep)

"}" optsep ";"
t ypedef St at enent = typedef Keyword sep ucldentifier optsep
"{" stntsep

typedef TypeSt at ement st it sep
*1(defaul t St at ement stntsep)
*1(format St at enment st nt sep)
*1(unitsStatenent stntsep)
statusStatement stntsep
descri ptionSt at enent stntsep
*1(ref erenceSt at ement stntsep)
"}" optsep ;"

i dentityStatenment identityStntKeyword sep Icldentifier optsep
"{" stntsep
*1(parent St at enent st nt sep)
statusSt at ement stntsep
descri ptionSt at enent stntsep
*1(ref erenceSt at ement stntsep)

"1" optsep ";"

cl assSt at enent = cl assKeyword sep ucldentifier optsep
"{" stntsep
*1(ext endsSt at ement st nt sep)
*(attributeStatenent stntsep)
*1(uni queSt at enent st nt sep)

Strauss & Schoenwael der Experi nment al [Page 54]

RFC 3780 SM ng May 2004

*(event St at enent st nt sep)
statusStat enment stntsep

descri ptionSt at enent stntsep
*1(ref erenceSt at ement stntsep)

n } n opt Sep m ; m
attri buteSt at enent = attributeKeyword sep
Icldentifier optsep
"{" stntsep

typeStat enent stntsep
*1(accessSt at enent st nt sep)
*1(defaul t St at ement stntsep)
*1(format St at enment st nmt sep)
*1(unitsStatenment stntsep)
statusStatenment stntsep
descri ptionSt at enent stntsep
*1(ref erenceSt at ement stntsep)
"}" optsep ";"

uni quesSt at enment = uni queKeyword opt sep
"(" optsep glcldentifierlList

optsep ")" optsep ";

event St at ement = event Keyword sep | cldentifier
optsep "{" stmtsep
statusStatement stntsep
descri ptionSt at enent stntsep
*1(ref erenceSt at ement stntsep)

"}" optsep ;"
i mport St at enment = i nport Keyword sep ucldentifier optsep
"(" optsep
identifierList optsep
")" optsep ";"

revi si onSt at enment revi si onkeyword optsep "{" stntsep
dat eSt at ement stntsep
descri ptionSt at enent stntsep

"1" optsep ";"

typeKeyword sep refinedBaseType optsep ";"

t ypedef TypeSt at enment

t ypeSt at enent = typeKeyword sep

(refinedBaseType / refinedType) optsep ";"
par ent St at ement = parentKeyword sep qglcldentifier optsep ";"
ext endsSt at ement = extendsKeyword sep qucldentifier optsep ";"

Strauss & Schoenwael der Experi nment al [Page 55]

RFC 3780 SM ng May 2004

dat eSt at enent = dat eKeyword sep date optsep ";"

or gani zat i onKeyword sep text optsep ";"

or gani zati onSt at enent

cont act St at enent = contact Keyword sep text optsep ";"

for mat St at enent = format Keyword sep format optsep ";"
uni t sSt at ement = uni tskeyword sep units optsep ";"

st at usSt at ement = statusKeyword sep status optsep ";'
accessSt at ement = accessKeyword sep access optsep ";"
def aul t St at enrent = defaul t Keyword sep anyVal ue optsep ";"

descri pti onKeyword sep text optsep ";"

descri pti onSt at enent

ref erenceSt at enent ref erenceKeyword sep text optsep ";"

abnf St at enent = abnf Keyword sep text optsep ";"

refi nedBaseType = (bjectldentifierKeyword /

Cctet Stringkeyword *1(optsep nunber Spec) /
Poi nt er Keyword *1(optsep pointerSpec) /
I nt eger 32Keyword *1(opt sep number Spec) /
Unsi gned32Keyword *1(optsep nunber Spec) /
I nt eger 64Keyword *1(opt sep numnber Spec) /
Unsi gned64Keyword *1(optsep nunber Spec) /
FI oat 32Keyword *1(optsep fl oat Spec) /
FI oat 64Keyword *1(optsep fl oat Spec) /
FI oat 128Keyword *1(optsep fl oat Spec) /
Enuner at i onKeywor d

opt sep namedSi gnedNunber Spec /
Bi t skeywor d opt sep nanedNunber Spec

refinedType = qucldentifier *1(optsep anySpec)
anySpec = poi nter Spec / nunber Spec / fl oat Spec
poi nt er Spec = "(" optsep glcldentifier optsep ")"

Strauss & Schoenwael der Experi nment al [Page 56]

RFC 3780 SM ng May 2004

nunber Spec = "(" optsep nunber El enent
*f urt her Nunmber El enment
optsep ")"
further Nunber El enment = optsep "|" optsep nunberEl enent
nunber El enment = si gnedNunber *1lnunber Upper Li mit
nunber Upper Li mi t = optsep ".." optsep signhedNunber
f 1 oat Spec = "(" optsep fl oatEl enent
*furt her Fl oat El enent
optsep ")"
furtherFl oat El enent = optsep "|" optsep fl oatEl enent
f1 oat El enent = fl oat Val ue *1fl oat UpperLinit
f1 oat Upper Li mi t = optsep ".." optsep floatVal ue
nanedNumnber Spec = "(" optsep namedNunberlList optsep ")"
nanedNumber Li st = nanmedNunber | t em
*(optsep "," optsep nanedNunberltem
nanedNumnber | t em = lcldentifier optsep "(" optsep nunber
optsep ")"

"(" optsep namedSi gnedNunber Li st optsep ")"

nanedSi gnedNumnber Spec

nanedSi gnedNunber|tem

*(optsep "," optsep
nanedSi gnedNunber |l tem

namedSi gnedNumnber Li st

Icldentifier optsep "(" optsep signedNumber

nanedSi gnedNunber|tem

optsep ")"
identifierList = identifier

*(optsep "," optsep identifier)
gl dentifierlList = qgldentifier

*(optsep "," optsep gldentifier)
gl cldentifierList = qglcldentifier

*(optsep "," optsep glcldentifier)
bi t svVal ue = "(" optsep bitsList optsep ")"

Strauss & Schoenwael der Experi nment al [Page 57]

RFC 3780

bi t sLi st

;; O her

basi c rul es.

identifier

gl dentifier

ucl dentifier
gucl dentifier

I cldentifier
glcldentifier
attridentifier
gattridentifier

cattrldentifier

gcattrildentifier

t ext

t ext Segnent

t ext At om

dat e

f or mat
units

anyVal ue

Strauss & Schoenwael der

SM ng

*1(lcldentifier
*(optsep ",

optsep lcldentifier))

ucldentifier / lcldentifier

qucldentifier / qglcldentifier

ucAl pha *63(ALPHA / DI T/ "-")
*1(ucldentifier "::") ucldentifier
| cAl pha *63(ALPHA / DI T / "-")

*1(ucldentifier I cldentifier

")

[cldentifier *("." lcldentifier)

*1(ucldentifier ".") attrildentifier

ucldentifier "."

Icldentifier *("." lcldentifier)

qucldentifier "."
Icldentifier *("." lcldentifier)

t ext Segnent *(optsep text Segnent)

DQUOTE *t ext At om DQUOTE
;. See Section 4.2.

textVChar / HTAB / SP / |ineBreak

DQUOTE 4DIEA T "-" 2DIEA T "-" 2DIGA T
*1(" " 2D T ":" 2D T)
DQUOTE

; always in UTC
t ext Segnent
t ext Segnent
bi t sVal ue /

si gnedNunmber /
hexadeci mal Nunber /

Experi nent al [

May 2004

Page 58]

RFC 3780

stat us

access

obj ectldentifier

subi d

nunber
negat i veNunber

si gnedNunber
deci mal Nunber

zer oDeci mal Nurrber

hexadeci mal Nunber

f | oat Val ue

SM ng May 2004

fl oat Val ue /

text /

obj ectldentifier

; Note: ‘objectldentifier’ includes the
; syntax of enuneration |abels and

; identities.

; They are not naned literally to

; avoi d reduce/reduce conflicts when

; building LR parsers based on this

; grammar.

current Keyword /
depr ecat edkeyword /
obsol et eKeyword

event onl yKeyword /
readonl yKeyword /
readwrit eKeyword

(glcldentifier / subid "." subid)
*127("." subid)

deci mal Nunmber

hexadeci nal Nunber / deci mal Nunber

-" deci mal Nurber

nunber / negati veNunber
"0" / (nonZeroDigit *DIGT)
1*DIAT

%30 %78 ; "Ox" with x only | ower-case
1* (HEXDI G HEXDI G)

negi nf Keyword /

posi nf Keyword /

snanKeyword /

gnanKeyword /

si gnedNunber zer oDeci mal Nurnber
*L("E" ("+"/"-") zeroDeci mal Nunber)

;7 Rules to skip unknown statenents
7, With arbitrary argunments and bl ocks.

Strauss & Schoenwael der Experi nmenta

[Page 59]

RFC 3780 SM ng May 2004
unknownSt at enent = unknownKeywor d opt sep *unknownAr gunent
optsep ";"
unknownAr gunent = ("(" optsep unknownLi st optsep ")") /
("{" optsep *unknownSt at enent optsep "}") /
gucl dentifier /
anyVal ue /
anySpec
unknownlLi st = namedNunber Li st /

gl dentifierlList

unknownKeywor d

Keyword rul es.

| cldentifier

Typically, keywords are represented by tokens returned fromthe

has to be stateful

to

di stingui sh keywords fromidentifiers depending on the context

position in the input stream

;; lexical analyzer. Note, that the |exer

o%x6D % 6F
%69 ¥%6D
OX72 %65
%64 %61
Ox6F %72
X699 YX6F
%63 YX6F
0x64 9% 65
U%6F % 6E
OX72 %65
065 %78
Ox74 979
Ox74 979
%70 %61
%69 %64
%63 W 6C
065 %78
%61 %74
75 Y% 6E
065 976
0x66 YX6F
75 Y% 6E
X733 Y74
061 %63
0x64 965

nodul eKeywor d

i mpor t Keywor d

revi si onKeywor d

dat eKeyword

or gani zat i onKeywor d

cont act Keywor d
descri pti onKeyword

r ef erenceKeyword
ext ensi onKeywor d
t ypedef Keywor d

t ypeKeyword

par ent Keywor d

i dentityStn Keyword
cl assKeywor d

ext endsKeywor d
attri but eKeyword
uni queKeywor d
event Keywor d

f or mat Keywor d

uni t skeyword

st at usKeyword
accessKeyword
def aul t Keywor d

Strauss & Schoenwael der

%64
070
o076
ox74
067
U 6E
U 6E
o073

X 66
ox74
070
070
o072
965
061
ox74
ox74
969
965
O 72
69
061
963
X 66

975
U 6F
969
965
%61

U 74
%63

965
965
965
965
965
Y 6E
973
965
U722
71
Y 6E
% 6D
974
974
965
%61

Experi nment al

0% 6C
072
73

U 6E

061
Ox72

Ox72
U 6E
0x 64

U 6E
074
O 73
U 6E
969
975
074
61
O 73
975
O 73
975

9% 65
74
%69

%69

9% 63
%69

9% 65
973
9% 65

74
%69

%% 64
962
9% 65

74
973

973
%% 6C

X 6F

OXT7A

074
070

U 6E
%69
066
074

O 73
Ux75

074

Y 6E

%61

974

9% 63
X 6F

979

974

074

%69

065
U 6E

065

[Page 60]

RFC 3780

abnf Keywor d

;; Base type keywords.

Cct et Stri ngKeyword

Poi nt er Keywor d

oj ectldentifier Keyvvor d

I nt eger 32Keywor d
Unsi gned32Keywor d

I nt eger 64Keywor d
Unsi gned64Keywor d

FI oat 32Keywor d

FI oat 64Keywor d

FI oat 128Keywor d

Bi t skeyword

Enuner at i onKeywor d

;; Status keywords.

current Keyword
depr ecat edKeywor d

obsol et eKeyword

;; Access keywords.
event onl yKeywor d

r eadonl yKeywor d
readwrit eKeyword

;; Special floating
negi nf Keywor d

posi nf Keywor d

snanKeywor d
gnanKeywor d

oi

©

61 962

% 4F %63
UX6E 967
%50 %6F
= OX4F
965 Y%X6E
%49 9x6E
%55 9%6E
032
%49 9x6E
%55 9%6E
034
%46 9% 6C
%46 9% 6C
%46 9% 6C
%42 %69
%45 Y% 6E
U%6F % 6E

063 %75
0x64 9% 65
% 64

Ox6F %62

065 976
Ux72 %65
Ux72 %65

nt val ues

UX6E %65
%70 Y%6F
73 Y6E
71 % 6E

7 Sone |low | evel rules.

i, These tokens are typically skipped

Strauss & Schoenwael der

SM ng

MX6E %66

Ox74 %65

%69 Y%6E
062 YX6A
%74 %69
074 %65
X733 969

074 %65
U733 969

O%6F %61
O%6F %61
O%6F %61
Ox74 973
75 ¥%6D

Ox72 Y72
Ox70 %72

W73 UX6F

%65 Y% 6E
%61 %64
%61 %64

keywor ds.

67 969
W73 969
61 YXGE
61 YXGE

Experi nment al

ox74

ox74
965
X 66
o067
o067

ox67
ox67

074
074
074

0% 65

0% 65
0% 65

0% 6C

074
O 6F
ox77

U 6E
U 6E

%53

965
963
969
965
Y 6E

9% 65
9% 6E

%33
9% 36
%31

U722

9% 6E
9% 63

9% 65

X 6F
9% 6E
X722

%66
%66

by the | exical

074

O 72
074
965
O 72
965

Ox72
0% 65

032
034
032

061

074
061

074

U 6E
0% 6C
%69

972

%49
972
%33
%64

9% 36
%64

9% 38

U974

974

9% 65

% 6C
979
74

anal yzer.

May 2004

%69
064

032
0% 33

034
0 36

%69

0% 65

o079

065

[Page 61]

RFC 3780

sep

opt sep

stnt sep

conment

| i neBr eak

SM ng
= 1*(coment / lineBreak / WSP)
; uncondi tional separator

= *(comment / lineBreak / W&P)
= *(coment /

i neBreak /

WGP /

unknownSt at enent)

="/]" *(WSP / VCHAR) I|i neBreak

= CRLF / LF

;; Encoding specific rules.

t ext VChar

ucAl pha
| cAl pha

nonZer oDi gi t

w21 /| %23-7E
; any VCHAR except DQUOTE

%% 41- 5A

961-7A

% 31- 39

;7 RFC 2234 core rules.

ALPHA

CR

CRLF

DGAT

DQUOTE

HEXDI G

% 41-5A /| 9%61-7A
 A-Z] a-z

% 0D
; carriage return

CR LF
. Internet standard new i ne

9% 30- 39
. 0-9

W22
;" (Doubl e Quote)

DAT/
61 / %62 /| %63 / 9%*64 |/ 965 / Ux66

Strauss & Schoenwael der Experi nent al

May 2004

[Page 62]

RFC 3780 SM ng May 2004

; only |ower-case a..f

HTAB = 909

: horizontal tab
LF = OWO0A

. linefeed
SP = %20

; Space
VCHAR = 9&21-7E

; visible (printing) characters
WGP = SP / HTAB

; white space
;. End of ABNF

Aut hor s’ Addresses

Frank Strauss

TU Braunschwei g

Muehl enpf or dt strasse 23
38106 Braunschweig

Ger many

Phone: +49 531 391 3266
EMai | : strauss@br.cs.tu-bs. de
URI : http://ww.ibr.cs.tu-bs. de/

Juer gen Schoenwael der
International University Brenen
P. O Box 750 561

28725 Brenen

Ger many

Phone: +49 421 200 3587

EMai | : j.schoenwael der @ u- brenen. de
URI : http://ww. eecs. i u-brenen. de/

Strauss & Schoenwael der Experi nment al [Page 63]

RFC 3780 SM ng May 2004

Ful I Copyright Statenent

Copyright (C) The Internet Society (2004). This docunent is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR I'S SPONSORED BY (IF ANY), THE I NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED,

| NCLUDI NG BUT NOT LIMTED TO ANY WARRANTY THAT THE USE COF THE

| NFORVATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. |Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nmade to obtain a general |icense or permission for the use of
such proprietary rights by inplenmenters or users of this

speci fication can be obtained fromthe I ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that nmay cover technol ogy that nay be required to inplenment
this standard. Please address the information to the IETF at ietf-
ipr@etf.org.

Acknow edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Strauss & Schoenwael der Experi nment al [Page 64]

