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Abstract

Based on an appropriate detection algorithm the Eifel response
algorithmprovides a way for a TCP sender to respond to a detected
spurious timeout. It adapts the retransnission tiner to avoid
further spurious tinmeouts and (depending on the detection algorithm
can avoid the often unnecessary go-back-N retransmits that would

ot herwi se be sent. 1In addition, the Eifel response algorithm
restores the congestion control state in such a way that packet
bursts are avoi ded.

1. Introduction

The Eifel response algorithmrelies on a detection algorithmsuch as
the Eifel detection algorithm defined in [RFC3522]. That docunent
contains informative background and notivation context that may be
useful for inplenmenters of the Eifel response algorithm but it is
not necessary to read [RFC3522] in order to inplenment the Eife
response algorithm Note that alternative response algorithns have
been proposed [BAO2] that could also rely on the Eifel detection
algorithm and alternative detection algorithms have been proposed

[ RFC3708], [SKO4] that could work together with the Eifel response
al gorithm

Based on an appropriate detection algorithm the Eifel response

algorithm provides a way for a TCP sender to respond to a detected
spurious timeout. It adapts the retransnission tiner to avoid
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1.

further spurious tinmeouts and (depending on the detection algorithm
can avoid the often unnecessary go-back-N retransnmits that would

ot herwi se be sent. 1In addition, the Eifel response algorithm
restores the congestion control state in such a way that packet
bursts are avoi ded.

Note: A previous version of the Eifel response algorithm al so

i ncluded a response to a detected spurious fast retransnit.
However, as a consensus was not reached about how to adapt the
dupl i cate acknow edgenent threshold in that case, that part of the
al gorithmwas renoved for the time being.

Ter ni nol ogy

The keywords MJST, MJST NOT, REQUI RED, SHALL, SHALL NOT, SHOULD
SHOULD NOT, RECOMMVENDED, MAY, and OPTI ONAL, when they appear in this
docunent, are to be interpreted as described in [ RFC2119].

W refer to the first-tine transm ssion of an octet as the ’original
transnmit’. A subsequent transm ssion of the sane octet is referred
to as a 'retransnmit’. |In nbost cases, this termninology can al so be
applied to data segnents. However, when repacketization occurs, a
segnent can contain both first-tine transm ssions and retransmni ssions
of octets. In that case, this term nology is only consistent when
applied to octets. For the Eifel detection and response al gorithns,
this nakes no difference, as they al so operate correctly when
repacketi zati on occurs.

W use the term’ acceptable ACK as defined in [RFC793]. That is an
ACK t hat acknow edges previously unacknow edged data. W use the
term’ bytes_acked to refer to the anount (in terns of octets) of
previ ously unacknow edged data that is acknowl edged by the nost
recently received acceptable ACK. W use the TCP sender state
variabl es " SND. UNA" and ' SND. NXT' as defined in [RFC793]. SND. UNA
hol ds the segment sequence nunber of the ol dest outstanding segnent.
SND. NXT hol ds the segnent sequence nunber of the next segnent the TCP
sender will (re-)transmt. In addition, we define as 'SND. MAX the
segnent sequence nunber of the next original transnit to be sent.
The definition of SND. MAX is equivalent to the definition of
"snd_max’ in [WB95].

We use the TCP sender state variables 'cwnd' (congestion w ndow), and
"ssthresh’ (slowstart threshold), and the term’FlightSize as
defined in [RFC2581]. FlightSize is the anbunt (in ternms of octets)
of outstanding data at a given point in tinme. W use the term
"Initial Wndow (IW as defined in [RFC3390]. The IWis the size of
t he sender’s congestion wi ndow after the three-way handshake is

conpl eted. W use the TCP sender state variables 'SRTT and
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3.

"RTTVAR , and the terns "RTO and 'G as defined in [RFC2988]. Gis
the clock granularity of the retransmission tinmer. |In addition, we

assune that the TCP sender nmintains the value of the | atest round-

trip tinme (RTT) nmeasurenent in the (local) variable ' RTT- SAMPLE'

We use the TCP sender state variable 'T_last’, and the term’ tcpnow
as used in [RFC2861]. T_last holds the systemtinme when the TCP
sender sent the |ast data segnent, whereas tcpnow is the TCP sender’s
current systemti me.

Appropriate Detection Al gorithns

If the Eifel response algorithmis inplemented at the TCP sender, it
MUST be inplenented together with a detection algorithmthat is
specified in a standards track or experinmental RFC

Desi gners of detection algorithms who want their algorithns to work
together with the Eifel response algorithmshould reuse the variable
"SpuriousRecovery" with the semantics and defined val ues specified in
[ RFC3522]. In addition, we define the constant LATE SPUR TO (set
equal to -1) as another possible value of the variable

Spuri ousRecovery. Detection algorithms should set the val ue of

Spuri ousRecovery to LATE SPUR TO if the detection of a spurious
retransmit is based on the ACK for the retransnit (as opposed to an
ACK for an original transmit). For exanple, this applies to
detection algorithnms that are based on the DSACK option [ RFC3708].

The Eifel Response Al gorithm

The conplete algorithmis specified in section 3.1. 1In sections 3.2
- 3.6, we discuss the different steps of the algorithm

1. The Al gorithm

G ven that a TCP sender has enabled a detection algorithmthat
conplies with the requirenments set in Section 2, a TCP sender NAY use
the Eifel response algorithmas defined in this subsection

If the Eifel response algorithmis used, the follow ng steps MIST be
taken by the TCP sender, but only upon initiation of a timeout-based
| oss recovery. That is when the first tinmeout-based retransmt is
sent. The algorithm MJUST NOT be reinitiated after a timeout-based

| oss recovery has already been started but not conpleted. In
particular, it may not be reinitiated upon subsequent tinmeouts for
the sanme segnment, or upon retransnitting segnments other than the

ol dest outstandi ng segnent.
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(0) Bef ore the variables cwnd and ssthresh get updated when
|l oss recovery is initiated, set a "pipe_prev" variable as
foll ows:

pi pe_prev <- max (FlightSize, ssthresh)

Set a "SRTT_prev" variable and a "RTTVAR prev" variable as
foll ows:

SRTT prev <- SRTT + (2 * §

RTTVAR prev <- RTTVAR

( DET) This is a placeholder for a detection algorithmthat nust
be executed at this point, and that sets the variable
Spuri ousRecovery as outlined in Section 2. |If
[ RFC3522] is used as the detection algorithm steps (1) -
(6) of that al gorithm go here.

(7) | f SpuriousRecovery equals SPUR TO, then
proceed to step (8);

el se if SpuriousRecovery equals LATE SPUR TO, then
proceed to step (9);

el se
proceed to step (DONE)

(8) Resune the transm ssion with previously unsent data:

Set
SND. NXT <- SND. MAX

(9) Reverse the congestion control state:
I f the acceptable ACK has the ECN-Echo flag [ RFC3168] set,
thenproceed to step (DONE)
el se set
cwnd <- FlightSize + nmin (bytes_acked, I'W
ssthresh <- pipe_prev
Proceed to step (DONE)
(10) I nterworking with Congestion Wndow Validation
| f congestion wi ndow validation is inplenmented according

to [ RFC2861], then set
T last <- tcpnow
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(11) Adapt the conservativeness of the retransnission tiner

Upon the first RTT-SAMPLE taken fromnew data; i.e., the
first RTT-SAMPLE that can be derived from an acceptable
ACK for data that was previously unsent when the spurious
ti meout occurred,

if the retransmi ssion tinmer is inplenented according
to [ RFC2988], then set

SRTT <- max (SRTT_prev, RTT-SAMPLE)

RTTVAR <- max (RTTVAR prev, RTT-SAMPLE 2)

RTO <- SRTT + max (G 4*RTTVAR)

Run the bounds check on the RTO (rules (2.4) and
(2.5) in [RFC2988]), and restart the
retransm ssion timer

el se
appropriately adapt the conservativeness of the
retransmssion tinmer that is inplenented.

(DONE) No further processing.
3.2. Storing the Current Congestion Control State (Step 0)

The TCP sender stores in pipe_prev what is considered a safe slow
start threshold (ssthresh) before loss recovery is initiated; i.e.,
before the loss indication is taken into account. This is either the
current FlightSize, if the TCP sender is in congestion avoi dance, or
the current ssthresh, if the TCP sender is in slowstart. |If the TCP
sender |ater detects that it has entered | oss recovery unnecessarily,
then pipe_prev is used in step (9) to reverse the congestion contro
state. Thus, until the loss recovery phase is term nated, pipe_prev
mai ntai ns a nenory of the congestion control state of the tinme right
before the | oss recovery phase was initiated. A simlar approach is
proposed in [ RFC2861], where this state is stored in ssthresh
directly after a TCP sender has becone idle or application |limted.

There had been debates about whether the val ue of pipe_prev should be
decayed over tinme; e.g., upon subsequent tineouts for the sane

out standi ng segnent. W do not require decaying pipe_prev for the
Eifel response algorithmand do not believe that such a conservative
approach should be in place. Instead, we follow the idea of
reval i dating the congestion w ndow t hrough slow start, as suggested
in [RFC2861]. That is, in step (9), the cwnd is reset to a val ue
that avoi ds | arge packet bursts, and ssthresh is reset to the val ue
of pipe_prev. Note that [RFC2581] and [ RFC2861] al so do not require
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a decaying of ssthresh after it has been reset in response to a | oss
i ndication, or after a TCP sender has becone idle or application
[imted.

3.3. Suppressing the Unnecessary go-back-N Retransnits (Step 8)

Wthout the use of the TCP tinmestanps option [ RFC1323], the TCP
sender suffers fromthe retransni ssion anbi guity problem [Zh86],

[ KP87]. Therefore, when the first acceptable ACK arrives after a
spurious tinmeout, the TCP sender nust assune that this ACK was sent
in response to the retransmt when in fact it was sent in response to
an original transmt. Furthernore, the TCP sender nust further
assunme that all other segnments that were outstanding at that point
were | ost.

Not e: Except for certain cases where original ACKs were lost, the
first acceptable ACK cannot carry a DSACK option [ RFC2883].

Consequently, once the TCP sender’s state has been updated after the
first acceptable ACK has arrived, SND.NXT equals SND.UNA. This is
what causes the often unnecessary go-back-N retransnmits. Fromthat
poi nt on every arriving acceptable ACK that was sent in response to
an original transmt wll advance SND. NXT. But as long as SND. NXT is
smal l er than the value that SND. MAX had when the timeout occurred,
those ACKs will clock out retransnmits, whether or not the
corresponding original transmts were |ost.

In fact, during this phase the TCP sender breaks 'packet

conservation’ [Jac88]. This is because the go-back-N retransnits are
sent during slowstart. For each original transmt |eaving the
network, two retransmits are sent into the network as | ong as SND. NXT
does not equal SND. MAX (see [LKOO] for nore detail).

Once a spurious tineout has been detected (upon receipt of an ACK for
an original transmt), it is safe to let the TCP sender resune the
transm ssion with previously unsent data. Thus, the Eifel response
al gorithm changes the TCP sender’s state by setting SND. NXT to

SND. MAX. Note that this step is only executed if the variable

Spuri ousRecovery equals SPUR TO, which in turn requires a detection
al gorithm such as the Eifel detection algorithm][RFC3522] or the F-
RTO al gorithm [ SKO4] that detects a spurious retransmt based upon
receiving an ACK for an original transnit (as opposed to the ACK for
the retransmt [RFC3708]).

Ludwi g & GQurtov St andar ds Track [ Page 6]



RFC 4015 The Eifel Response Al gorithmfor TCP February 2005

3.4. Reversing the Congestion Control State (Step 9)

When a TCP sender enters |oss recovery, it reduces cwnd and ssthresh
However, once the TCP sender detects that the | oss recovery has been
fal sely triggered, this reduction proves unnecessary. W therefore
believe that it is safe to revert to the previous congestion contro
state, followi ng the approach of revalidating the congestion w ndow
as outlined below. This is unless the acceptable ACK signals
congestion through the ECN-Echo flag [ RFC3168]. |In that case, the
TCP sender MUST refrain fromreversing congestion control state.

If the ECN-Echo flag is not set, cwnd is reset to the sumof the
current FlightSize and the mini nrum of bytes _acked and IW |In sone
cases, this can nean that the first few acceptable ACKs that arrive
will not clock out any data segnents. Recall that bytes_acked is the
nunber of bytes that have been acknow edged by the acceptable ACK
Note that the value of cwnd nust not be changed any further for that
ACK, and that the value of FlightSize at this point in time my be
different fromthe value of FlightSize in step (0). The value of IW
puts a limt on the size of the packet burst that the TCP sender nmay
send into the network after the Eifel response al gorithm has
termnated. The value of IWis considered an acceptabl e burst size.
It is the anpbunt of data that a TCP sender nay send into a yet
"unprobed" network at the beginning of a connection.

Then ssthresh is reset to the value of pipe_prev. As a result, the
TCP sender either imedi ately resunmes probing the network for nore
bandwi dth in congestion avoi dance, or it slowstarts to what is
consi dered a safe operating point for the congestion w ndow.

3.5. Interworking with the CW Algorithm (Step 10)

An inplenmentation of the Congestion Wndow Validation (CW) algorithm
[ RFC2861] could potentially nisinterpret a delay spike that caused a
spurious timeout as a phase where the TCP sender had been idle.
Therefore, T last is reset to prevent the triggering of the CW
algorithmin this case.

Note: The term’idle inplies that the TCP sender has no data
outstanding; i.e., all data sent has been acknow edged [Jac88].
According to this definition, a TCP sender is not idle while it is
wai ting for an acceptable ACK after a tinmeout. Unfortunately, the
pseudo-code in [ RFC2861] does not include a check for the
condition "idle" (SND.UNA == SND. MAX). We therefore had to add
step (10) to the Eifel response al gorithm
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3.6. Adapting the Retransmi ssion Tinmer (Step 11)

There is currently only one retransm ssion timer standardi zed for TCP
[ RFC2988]. W therefore only address that timer explicitly. Future
standards that might define alternatives to [ RFC2988] shoul d propose
simlar nmeasures to adapt the conservativeness of the retransm ssion
timer.

A spurious tinmeout often results froma delay spike, which is a
sudden increase of the RTT that usually cannot be predicted. After a
del ay spi ke, the RTT may have changed permanently; e.g., due to a
pat h change, or because the avail abl e bandwi dth on a bandw dt h-

dom nated path has decreased. This may often occur with w de-area
wirel ess access links. In this case, the RIT estimators (SRTT and
RTTVAR) should be reinitialized fromthe first RTT- SAMPLE taken from
new data according to rule (2.2) of [RFC2988]. That is, fromthe
first RTT-SAMPLE that can be derived froman acceptable ACK for data
that was previously unsent when the spurious tinmeout occurred.

However, a delay spike may only indicate a transient phase, after
which the RTT returns to its previous range of values, or even to
smal l er values. Also, a spurious timeout may occur because the TCP
sender’s RTT estimators were only inaccurate enough that the

retransmssion timer expires "a tad too early". W believe that two
times the clock granularity of the retransmission tinmer (2 * G is a
reasonabl e upper bound on "a tad too early". Thus, when the new RTO

is calculated in step (11), we ensure that it is at least (2 * Q
greater (see also step (0)) than the RTO was before the spurious
ti meout occurred.

Note that other TCP sender processing will usually take place between
steps (10) and (11). During this phase (i.e., before step (11) has
been reached), the RTO is managed according to the rul es of

[ RFC2988]. We believe that this is sufficiently conservative for the
follow ng reasons. First, the retransmission tinmer is restarted upon
the acceptable ACK that was used to detect the spurious tineout. As
a result, the delay spike is already inplicitly factored in for
segnhents outstanding at that tine. This is discussed in nore detai
in [ELO4], where this effect is called the "RTO offset".

Furthernmore, if tinmestanps are enabled, a new and valid RTT- SAMPLE
can be derived fromthat acceptable ACK. This RTT- SAMPLE nust be
relatively large, as it includes the delay spi ke that caused the
spurious tinmeout. Consequently, the RTT estimators will be updated
rat her conservatively. Wthout tinmestanps the RTOw || stay
conservatively backed-off due to Karn's algorithm[RFC2988] until the
first RTT-SAMPLE can be derived froman acceptable ACK for data that
was previously unsent when the spurious tinmeout occurred.
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For the new RTO to becone effective, the retransm ssion tiner has to
be restarted. This is consistent with [ RFC2988], which recommends
restarting the retransmssion tinmer with the arrival of an acceptable
ACK.

4. Advanced Loss Recovery is Crucial for the Eifel Response Al gorithm

We have studi ed environnments where spurious tinmeouts and nultiple

| osses fromthe same flight of packets often coincide [G02], [G.03].
In such a case, the ol dest outstandi ng segnment arrives at the TCP
receiver, but one or nore packets fromthe remnaining outstanding
flight are lost. In those environments, end-to-end performance
suffers if the Eifel response algorithmis operated without an
advanced | oss recovery schene such as a SACK-based schene [ RFC3517]
or NewReno [RFC3782]. The reason is TCP-Reno’s aggressiveness after
a spurious tinmeout. Even though TCP-Reno breaks ' packet
conservation (see Section 3.3) when blindly retransmtting al

out standi ng segnents, it usually recovers all packets |ost fromthat
flight within a single round-trip tine. On the contrary, the nore
conservative TCP-Reno-with-Eifel is often forced into another
timeout. Thus, we recommend that the Eifel response al gorithm al ways
be operated in combination with [RFC3517] or [RFC3782]. Additional
robustness is achieved with the Linmited Transnmit and Early Retransmit
al gorithms [ RFC3042], [AAABO4].

Not e: The SACK-based scheme we used for our simulations in [G.02]
and [G.03] is different fromthe SACK-based schene that |ater got
standardi zed [ RFC3517]. The key difference is that [RFC3517] is

nore robust to nmultiple | osses fromthe sanme flight. It is |less

conservative in declaring that a packet has left the network, and
is therefore | ess dependent on timeouts to recover genui ne packet
| osses.

If the NewReno al gorithm [RFC3782] is used in conbination with the
Eifel response algorithm step (1) of the NewReno al gorithm SHOULD be
nmodi fied as follows, but only if SpuriousRecovery equals SPUR TO

(1) Three duplicate ACKs:
When the third duplicate ACK is received and the sender is
not already in the Fast Recovery procedure, go to step 1A

That is, the entire step 1B of the NewReno algorithmis obsolete
because step (8) of the Eifel response al gorithm avoids the case
where three duplicate ACKs result from unnecessary go-back-N
retransmits after a timeout. Step (8) of the Eifel response

al gorithm avoi ds such unnecessary go-back-N retransmits in the first
pl ace. However, recall that step (8) is only executed if the

vari abl e SpuriousRecovery equals SPUR TO which in turn requires a
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detection algorithm such as the Eifel detection algorithm[RFC3522]
or the F-RTO al gorithm [SK04], that detects a spurious retransmt
based upon receiving an ACK for an original transmt (as opposed to
the ACK for the retransmt [RFC3708]).

5. Security Considerations

There is a risk that a detection algorithmis fooled by spoofed ACKs
that nake genuine retransnits appear to the TCP sender as spurious
retransmits. Wen such a detection algorithmis run together with
the Eifel response algorithm this could effectively disable
congestion control at the TCP sender. Should this become a concern
the Eifel response al gorithm SHOULD only be run together with
detection algorithns that are known to be safe agai nst such "ACK
spoofing attacks".

For example, the safe variant of the Eifel detection algorithm
[ RFC3522], is a reliable nethod to protect against this risk.
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WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. |Information
on the ETF' s procedures with respect to rights in | ETF Docunments can
be found in BCP 78 and BCP 79.

Copi es of IPR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nmade to obtain a general |icense or permission for the use of
such proprietary rights by inplenmenters or users of this

speci fication can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that nmay cover technol ogy that nay be required to inplenment
this standard. Please address the information to the IETF at ietf-
ipr@etf.org.
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