Net wor k Wor ki ng Group M K. Shin, Ed.
Request for Coments: 4038 ETRI/ NI ST
Cat egory: I nfornmational Y-G Hong
ETRI

J. Hagi no

IJ

P. Savol a

CSC/ FUNET

E. M Castro

GSYC/ URJIC

March 2005

Application Aspects of |IPv6 Transition
Status of This Meno

This meno provides information for the Internet conmmunity. |t does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C The Internet Society (2005).
Abstract

As |1 Pv6 networks are deployed and the network transition is

di scussed, one should al so consider how to enable | Pv6 support in
applications running on | Pv6 hosts, and the best strategy to devel op
| P protocol support in applications. This docunent specifies
scenari os and aspects of application transition. It also proposes
gui del i nes on how to devel op I P version-independent applications
during the transition period.

Shin, Ed., et al. I nf or mat i onal [Page 1]

RFC 4038 Application Aspects of IPv6 Transition March 2005

Tabl e of Contents

L. Introducti On 3
2. Overview of IPv6 Application Transition 3
3. Problens with IPv6 Application Transition 5
3.1. 1Pv6 Support in the OS and Applications Are Unrelated... 5
3.2 DNS Does Not | ndicate Wiich IP Version WIl Be Used 6
3.3 Supporting Many Versions of an Application Is Difficult. 6
4. Description of Transition Scenarios and Guidelines 7
4.1 | Pv4 Applications in a Dual-Stack Node 7
4.2 | Pv6 Applications in a Dual-Stack Node 8
4.3 | Pv4/ 1 Pv6 Applications in a Dual-Stack Node 11
4.4 | Pv4/ 1 Pv6 Applications in an IPv4-only Node 12
5. Application Porting Considerations 12
5.1 Presentation Format for an IP Address 13
5.2 Transport Layer APl 14
5.3 Name and Address Resolution 15
5.4 Specific IP Dependencies, 16
5.4.1. IP Address Selection, 16
5.4.2. Application Framing 16
5.4.3. Storage of IP addresses 17
5.5, Milticast Applications i, 17
6. Developing IP Version - Independent Applications 18
6.1. |IP Version - Independent Structures..................... 18
6.2. |IP Version - Independent APIS........., 19

6.2.1. Exanple of Overly Sinplistic TCP Server
Application 20

6.2.2. Exanple of Overly Sinplistic TCP dient
Application 21
6.2.3. Binary/Presentation Format Conversion 22
6.3. Ilterated Jobs for Finding the Wrking Address 23
6.3.1. Exanple of TCP Server Application 23
6.3.2. Exanple of TCP Cient Application 25
7. Transition Mechanism Considerations 26
8. Security Considerati ons i 26
9. ACKNOW edgmBNt S 27
10. Ref erences 27
Appendi x A. OQther Binary/Presentation Format Conversions 30
A.1l. Binary to Presentation Using inet_ntop() 30
A.2. Presentation to Binary Using inet_pton() 31
AUt hor s’ Addr €SSEeS . .. i 32
Ful I Copyright Statement 33
Shin, Ed., et al. I nf or mat i onal [Page 2]

RFC 4038 Application Aspects of IPv6 Transition March 2005

1.

| nt roducti on

As |Pv6 is introduced in the | Pv4-based Internet, several genera
issues will arise, such as routing, addressing, DNS, and scenari os.

An inmportant key to a successful IPv6 transition is conpatibility
with the large installed base of |IPv4 hosts and routers. This issue
has al ready been extensively studied, and work is still in progress.

[2893BI S] describes the basic transition nechanisns: dual -stack

depl oynment and tunneling. Various other kinds of nechanisns have
been devel oped for the transition to an I Pv6 network. However, these
transition nechani sms take no stance on whether applications support

| Pv6.

Thi s docunent specifies application aspects of IPv6 transition. Two
inter-related topics are covered:

1. How different network transition techni ques affect
applications, and strategies for applications to support |Pv6
and | Pv4.

2. How to devel op | Pv6-capabl e or protocol-i ndependent
applications ("application porting guidelines") using standard
APl's [RFC3493] [RFC3542] .

In the context of this docunent, the term "application" covers al

ki nds of applications, but the focus is on those network applications
whi ch have been devel oped using relatively | owlevel APIs (such as
the "C' | anguage, using standard libraries). Many such applications
coul d be command-1line driven, but that is not a requirenent.

Applications will have to be nodified to support IPv6 (and | Pv4) by
usi ng one of a nunber of techniques described in sections 2 - 4.

Gui del i nes for devel opi ng such applications are presented in sections
5 and 6.

Overview of I Pv6 Application Transition
The transition of an application can be classified by using four

di fferent cases (excluding the first case when there is no | Pv6
support in either the application or the operating system

Shin, Ed., et al. I nf or mat i onal [Page 3]

RFC 4038 Application Aspects of IPv6 Transition March 2005

Fom e e e o i oo +

| appv4 | (appv4 - | Pv4-only applications)

Fom e e e o i oo +

| TCP/ UDP / others| (transport protocols - TCP, UDP
A + SCTP, DCCP, etc.)

| | Pv4 | 1Pv6 | (I'P protocols supported/ enabled in the OS)
Fom e e e o i oo +

Case 1. IPv4 applications in a dual-stack node.

A T T + (appv4 - |1 Pv4-only applications)

| appvd | appv6 | (appv6 - |1 Pv6-only applications)

Fom e e e o i oo +

| TCP/ UDP / others| (transport protocols - TCP, UDP

A T T + SCTP, DCCP, etc.)

| | Pv4 | 1Pv6 | (I'P protocols supported/ enabled in the OS)
Fom e e e o i oo +

Case 2. IPv4-only applications and I Pv6-only applications
in a dual -stack node.

Fom e e e o i oo +

| appv4/ veé | (appv4/v6 - applications supporting

R + both I Pv4 and | Pv6)

| TCP/ UDP / others| (transport protocols - TCP, UDP
A + SCTP, DCCP, etc.)

| | Pv4 | | Pv6 | (1P protocols supported/ enabled in the OS)
Fom e e e o i oo +

Case 3. Applications supporting both IPv4 and | Pv6
in a dual -stack node.

Fom e e e o i oo +

| appv4/ veé | (appv4/v6 - applications supporting

R + both 1 Pv4 and | Pv6)

| TCP/ UDP / others| (transport protocols - TCP, UDP
A + SCTP, DCCP, etc.)

| | Pv4 | (1P protocols supported/ enabled in the OS)
Fom e e e o i oo +

Case 4. Applications supporting both IPv4 and | Pv6
in an | Pv4-only node.

Figure 1. Overview of Application Transition

Figure 1 shows the cases of application transition.

Shin, Ed., et al. I nf or mat i onal [Page 4]

RFC 4038 Application Aspects of IPv6 Transition March 2005

Case 1. |Pv4-only applications in a dual-stack node.
| Pv6 protocol is introduced in a node, but
applications are not yet ported to support |Pv6.

Case 2. |Pv4-only applications and | Pv6-only applications
in a dual -stack node.
Applications are ported for IPv6-only. Therefore
there are two sinilar applications, one for each
protocol version (e.g., ping and ping6).

Case 3. Applications supporting both IPv4 and I Pv6 in a dual
stack node.
Applications are ported for both IPv4 and | Pv6 support.
Therefore, the existing | Pv4 applications can be
r enoved.

Case 4. Applications supporting both IPv4 and I Pv6 in an
| Pv4-only node.
Applications are ported for both IPv4 and | Pv6 support,
but the sane applications may al so have to work when
| Pv6 is not being used (e.g., disabled fromthe OS).

The first two cases are not interesting in the longer term only few
applications are inherently IPv4- or |IPv6-specific, and should work
with both protocols w thout having to care about which one is being
used.

Problens with | Pv6 Application Transition

There are several reasons why the transition period between |Pv4 and
| Pv6 applications may not be straightforward. These issues are
described in this section.

.1. 1Pv6 Support in the OS and Applications Are Unrel ated

Consi dering the cases described in the previous section, |Pv4 and
| Pv6 protocol stacks are likely to co-exist in a node for a |ong
tinme.

Simlarly, nost applications are expected to be able to handl e both
| Pv4 and | Pv6 during another long period. A dual-stack operating
systemis not intended to have both IPv4 and | Pv6 applications.
Therefore, |Pv6-capable application transition may be independent of
protocol stacks in a node.

Appl i cations capable of both IPv4 and IPv6 will probably have to
work properly in IPv4-only nodes (whether the IPv6 protocol is
conpl etely disabled or there is no | Pv6 connectivity at all).

Shin, Ed., et al. I nf or mat i onal [Page 5]

RFC 4038 Application Aspects of IPv6 Transition March 2005

3.2. DNS Does Not Indicate Which IP Version WI| Be Used

In a node, the DNS nane resolver gathers the |ist of destination
addresses. DNS queries and responses are sent by using either |1Pv4
or IPv6 to carry the queries, regardless of the protocol version of
the data records [DNSTRANS].

The DNS name resolution issue related to application transition is
that by only doing a DNS nane | ookup a client application can not be
certain of the version of the peer application. For exanple, if a
server application does not support |IPv6 yet but runs on a dual -stack
machi ne for other 1 Pv6 services, and this host is listed with an AAAA
record in the DNS, the client application will fail to connect to the
server application. This is caused by a m smatch between the DNS
query result (i.e., IPv6 addresses) and a server application version
(i.e., 1Pvd).

Usi ng SRV records woul d avoid these problens. Unfortunately, they
are not used widely enough to be applicable in npbst cases. Hence an
operational solution is to use "service nanes" in the DNS. |f a node
offers multiple services, but only sone of them over |Pv6, a DNS name
may be added for each of these services or group of services (with
the associ ated A/ AAAA records), not just a single nanme for the

physi cal machi ne, also including the AAAA records. However, the
appl i cati ons cannot depend on this operational practice.

The application should request all |P addresses w thout address
famly constraints and try all the records returned fromthe DNS, in
sone order, until a working address is found. |In particular, the
application has to be able to handle all IP versions returned from
the DNS. This issue is discussed in nore detail in [DNSOPV6] .

3.3. Supporting Many Versions of an Application is Difficult

During the application transition period, system adm nistrators nmay
have various versions of the sane application (an |Pv4-only
application, an |IPv6-only application, or an application supporting
both I Pv4 and | Pv6).

Typi cal |y one cannot know which I P versions nust be supported prior
to doing a DNS | ookup *and* trying (see section 3.2) the addresses
returned. Therefore if multiple versions of the sane application are
avail abl e, the |local users have difficulty selecting the right
version supporting the exact |P version required.

Shin, Ed., et al. I nf or mat i onal [Page 6]

RFC 4038 Application Aspects of IPv6 Transition March 2005

To avoid problens with one application not supporting the specified
protocol version, it is desirable to have hybrid applications
supporting both.

An alternative approach for local client applications could be to
have a "w apper application” that perforns certain tasks (such as
figuring out which protocol version will be used) and calls the

| Pv4/ 1 Pv6-only applications as necessary. This application would
perform connecti on establishment (or similar tasks) and pass the
opened socket to another application. However, as applications such
as this would have to do nore than just performa DNS | ookup or
determine the literal IP address given, they will becone conplex --
likely much nore so than a hybrid application. Furthernmore, witing
"wr appi ng" applications that perform conplex operations with IP
addresses (such as FTP clients) might be even nore chall engi ng or
even inpossible. In short, wapper applications do not |look Iike a
r obust approach for application transition.

4. Description of Transition Scenarios and Cuidelines

Once the I Pv6 network is depl oyed, applications supporting |IPv6 can
use I Pv6 network services to establish | Pv6 connections. However,
upgradi ng every node to IPv6 at the sane tinme is not feasible, and
transition fromlIPv4d to IPv6 will be a gradual process.

Dual - st ack nodes provide one solution to maintaining |Pv4d
conmpatibility in unicast comunications. |In this section we wll
anal yze different application transition scenarios (as introduced in
section 2) and guidelines for maintaining interoperability between
applications running in different types of nodes.

Note that the first two cases, |Pv4-only and | Pv6-only applications,
are not interesting in the longer term only few applications are

i nherently | Pv4- or |Pv6-specific, and should work with both
protocols without having to care about which one is being used.

4.1. |1 Pv4 Applications in a Dual -Stack Node

In this scenario, the IPv6 protocol is added in a node, but |Pv6-
capabl e applications aren’t yet available or installed. Al though the
node i npl enents the dual stack, |Pv4 applications can only nanage

| Pv4 conmuni cations and accept/establish connections fronito nodes
that inplement an | Pv4 stack.

To allow an application to comuni cate with other nodes using |Pv6,
the first priority is to port applications to |Pve6.

Shin, Ed., et al. I nf or mat i onal [Page 7]

RFC 4038 Application Aspects of IPv6 Transition March 2005

In some cases (e.g., when no source code is available), existing |IPv4d
applications can work if the Bunp-in-the-Stack [BI'S] or Bunp-in-the-
APl [BIA] nechanismis installed in the node. W strongly recomend
that application devel opers not use these mechani sns when application
source code is available. Al so, they should not be used as an excuse
not to port software or to delay porting.

Wien [BIA] or [BIS] is used, the problemdescribed in section 3.2
arises - (the IPv4 client in a [BIS]/[BIA] node tries to connect to
an | Pv4 server in a dual stack system). However, one can rely on the
[BIA]/[BI'S] nmechanism which should cycle through all the addresses

i nstead of applications.

[BIS] and [BIA] do not work with all kinds of applications - in
particular, with applications that exchange | P addresses as
application data (e.g., FTP). These nechani snms provide | Pv4d
tenporary addresses to the applications and | ocally nake a
transl ati on between |1 Pv4 and | Pv6 comuni cati on. Therefore, these
| Pv4 tenporary addresses are only valid in the node scope.

4.2. |1 Pv6 Applications in a Dual-Stack Node

As we have seen in the previous section, applications should be
ported to I Pv6. The easiest way to port an IPv4 application is to
substitute the old I Pv4 APl references with the new IPv6 APIs with
one-to-one mapping. This way the application will be I Pv6-only.

This 1 Pv6-only source code cannot work in |IPv4-only nodes, so the old
| Pv4 application should be maintained in these nodes. This
necessitates having two similar applications working with different
protocol versions, depending on the node they are running (e.g.,
telnet and telnet6). This case is undesirable, as mintaining two
versions of the sanme source code per application could be difficult.
Thi s approach woul d al so cause problens for users having to sel ect
whi ch version of the application to use, as described in section 3.3.

Most i npl enentations of dual stack allow IPv6-only applications to
interoperate with both IPv4 and | Pv6 nodes. | Pv4 packets going to
| Pv6 applications on a dual -stack node reach their destination
because their addresses are mapped by using | Pv4- mapped | Pv6
addresses: the | Pv6 address ::FFFF:x.y.z.w represents the |Pv4
address X.y.z.w.

Shin, Ed., et al. I nf or mat i onal [Page 8]

RFC 4038 Application Aspects of IPv6 Transition March 2005

o m o m o o e e e o ememaoaoo- +
| Pv4- mapped | | | Pv6
| Pv6 addresses | | addr esses
Fom e oo oo e T SRSy +
| | Pv4 | | | Pv6 |
Fom e oo oo e T SRSy +
| Pv4 | |
addresses | |
R I [------------- +
I
| Pv4 packets | Pv6 packets
We will analyze the behaviour of |Pv6-applications that exchange |Pv4
packets with |1 Pv4 applications by using the client/server nodel. W
consider the default case to be when the I PV6_VEONLY socket option
has not been set. In these dual-stack nodes, this default behavior

allows a limted anount of |Pv4 comuni cation using the |Pv4-mapped
| Pv6 addresses.

| Pv6-only server:
When an |1 Pv4 client application sends data to an | Pv6-only
server application running on a dual -stack node by using the
wi | dcard address, the IPv4 client address is interpreted as the
| Pv4- mapped | Pv6 address in the dual-stack node. This allows
the I Pv6 application to nanage the conmmuni cation. The |Pv6

server will use this mapped address as if it were a regul ar
| Pv6 address, and a usual |Pv6 connection. However, |Pv4
packets will be exchanged between the nodes. Kernels with dua

stack properly interpret |Pv4-mapped | Pv6 addresses as | Pv4
ones, and vice versa.

| Pv6-only client:
| Pv6-only client applications in a dual-stack node will not
receive | Pv4d- mapped addresses fromthe hostname resol uti on API
functions unless a special hint, Al_VAMAPPED, is given. If it

Shin, Ed., et al. I nf or mat i onal [Page 9]

RFC 4038 Application Aspects of IPv6 Transition March 2005

is, the IPv6 client will use the returned mapped address as if
it were a regular |Pv6 address, and a usual |Pv6 connection.
However, |Pv4 packets will be exchanged between applications.

Respectively, with | PV6_V6ONLY set, an |Pv6-only server application
will only communicate with I Pv6 nodes, and an | Pv6-only client only
with IPv6 servers, as the nmapped addresses have been disabled. This
option could be useful if applications use new | Pv6 features such as
FIl ow Label. |If conmunication with IPv4 is needed, either |PV6_V6ONLY
must not be used, or dual-stack applications nust be used, as
described in section 4.3.

Sone i npl ementati ons of dual -stack do not all ow | Pv4-mapped | Pv6
addresses to be used for interoperability between IPv4 and | Pv6
applications. |In these cases, there are two ways to handle the
pr obl em

1. Deploy two different versions of the application (possibly
attached with ' 6" in the nane).

2. Depl oy just one application supporting both protocol versions
as described in the next section.

The first nethod is not recommended because of a significant nunber
of problens associated with selecting the right applications. These
probl ens are described in sections 3.2 and 3. 3.

Therefore, there are two distinct cases to consider when witing one
application to support both protocols:

1. Whether the application can (or shoul d) support both |IPv4 and
| Pv6 t hrough | Pv4-mapped | Pv6 addresses or the applications
shoul d support both explicitly (see section 4.3), and

2. Whether the systens in which the applications are used support
| Pv6 (see section 4.4).

Note that sone systens will disable (by default) support for interna
| Pv4- mapped | Pv6 addresses. The security concerns regarding these
are legitimate, but disabling theminternally breaks one transition
nmechani sm for server applications originally witten to bind() and
listen() to a single socket by using a wildcard address. This forces
the software devel oper to rewite the daenbn to create two separate
sockets, one for IPv4 only and the other for IPv6 only, and then to
use select(). However, mappi ng-enabling of |IPv4 addresses on any
particular systemis controlled by the OS owner and not necessarily

Shin, Ed., et al. I nf or mat i onal [Page 10]

RFC 4038 Application Aspects of IPv6 Transition March 2005

by a devel oper. This conplicates devel opers’ work, as they now have
to rewite the daenon network code to handl e both environnments, even
for the same CS.

4.3. |1 Pv4/1Pv6 Applications in a Dual -Stack Node

Applications should be ported to support both IPv4 and | Pv6. Over
time, the existing |IPv4-only applications could be renoved. As we
have only one version of each application, the source code wll
typically be easy to maintain and to nodify, and there are no
probl ens managi ng which application to select for which

comuni cati on.

This transition case is the nost advisable. During the |IPv6
transition period, applications supporting both IPv4 and | Pv6 shoul d
be able to communi cate with other applications, irrespective of the
version of the protocol stack or the application in the node. Dua
applications allow nore interoperability between heterogeneous
appl i cati ons and nodes.

If the source code is witten in a protocol-i ndependent way, wi thout
dependenci es on either 1Pv4 or I Pv6, applications will be able to
comuni cate with any conbi nati on of applications and types of nodes.

| npl ementations typically prefer 1Pv6 by default if the renote node
and application support it. However, if |IPv6 connections fail

ver si on-i ndependent applications will automatically try |IPv4 ones.
The resolver returns a list of valid addresses for the renote node,
and applications can iterate through all of themuntil connection
succeeds.

Application witers should be aware of this protocol ordering, which
is typically the default, but the applications thenselves usually
need not be [RFC3484].

If the source code is witten in a protocol -dependent way, the
application will support IPv4 and IPv6 explicitly by using two
separate sockets. Note that there are sone differences in bind()

i npl enentation - that is, in whether one can first bind to | Pv6

wi | dcard addresses, and then to those for IPv4. Witing applications
that cope with this can be a pain. Inplenenting | PV6_V6ONLY
sinplifies this. The IPv4 wildcard bind fails on sonme systens
because the | Pv4 address space is enbedded into | Pv6 address space
when | Pv4- mapped | Pv6 addresses are used.

A nmore detailed porting guideline is described in section 6.

Shin, Ed., et al. | nf or mat i onal [Page 11]

RFC 4038 Application Aspects of IPv6 Transition March 2005

4.4. |1 Pv4/1Pv6 Applications in an | Pv4-Only Node

As the transition is likely to take place over a longer tine frane,
applications already ported to support both IPv4 and | Pv6 nay be run
on I Pv4-only nodes. This would typically be done to avoid supporting
two application versions for ol der and newer operating systens, or to
support a case in which the user wants to disable IPv6 for some
reason.

The nost inportant case is the application support on systens where
| Pv6 support can be dynanically enabled or disabled by the users.
Applications on such a system should be able to handle a situation
| Pv6 woul d not be enabl ed. Another scenario is when an application
i s deployed on ol der systens that do not support IPv6 at all (even
the basic APIs such as getaddrinfo). |In this case, the application
desi gner has to nake a case-by-case judgnment call as to whether it
makes sense to have conpile-tinme toggle between an ol der and a newer
APl (having to support both in the code), or whether to provide
getaddrinfo etc. function support on older platforns as part of the
application libraries.

Dependi ng on application/ operating system support, sone nmay want to
ignore this case, but usually no assunptions can be made, and
applications should also work in this scenari o.

An exanple is an application that issues a socket() conmmand, first
trying AF_I NET6 and then AF_INET. However, if the kernel does not
have | Pv6 support, the call will result in an EPROTONOSUPPORT or
EAFNOSUPPORT error. Typically, errors like these lead to exiting the
socket | oop, and AF_INET will not even be tried. The application
will need to handle this case or build the I oop so that errors are
ignored until the last address famly.

This case is just an extension of the IPv4/1Pv6 support in the
previ ous case, covering one relatively comon but often-ignored case.

5. Application Porting Considerations

The m ni mum changes for | Pv4 applications to work with | Pv6 are based
on the different size and format of |1Pv4 and | Pv6 addresses.

Applications have been devel oped with | Pv4 network protocol in mind
This assunption has resulted in many | P dependenci es through source
code.

The following |list sunmarizes the nore common | P version dependencies
in applications:

Shin, Ed., et al. | nf or mat i onal [Page 12]

RFC 4038 Application Aspects of IPv6 Transition March 2005

a) Presentation format for an I P address: An ASCI| string that
represents the | P address, a dotted-decimal string for |Pv4,
and a hexadeci mal string for |Pv6.

b) Transport |ayer API: Functions to establish conmunications and
to exchange i nformation

c¢) Nanme and address resol ution: Conversion functions between
host nanes and | P addresses.

d) Specific I P dependencies: Mre specific |IP version
dependenci es, such as | P address sel ection, application
fram ng, and storage of |P addresses.

e) Milticast applications: One nust find the | Pv6 equivalents to
the I Pv4 nulticast addresses and use the right socket
configuration options.

The follow ng subsections describe the problens with the

af orenentioned | P versi on dependenci es. Although application source
code can be ported to IPv6 with m ninum changes related to I P

addr esses, sone reconmendations are given to nodify the source code
in a protocol -i ndependent way, which will allow applications to work
with both I Pv4 and | Pv6.

5.1. Presentation Format for an | P Address

Many applications use | P addresses to identify network nodes and to
establish connections to destination addresses. For instance, using
the client/server nodel, clients usually need an I P address as an
application paraneter to connect to a server. This IP address is
usually provided in the presentation fornmat, as a string. There are
two problens when porting the presentation format for an | P address:
the allocated nmenory and the managenent of the presentation format.

Usual Iy, the nmenory allocated to contain an | Pv4 address
representation as a string is unable to contain an | Pv6 address.
Applications should be nodified to prevent buffer overflows nade
possi bl e by the larger |Pv6 address.

| Pv4 and | Pv6 do not use the sanme presentation format. |Pv4 uses a
dot (.) to separate the four octets witten in decinml notation, and
| Pv6 uses a colon (:) to separate each pair of octets witten in
hexadeci mal notation [RFC3513]. |In cases where one nust be able to
specify, for exanple, port nunbers with the address (see below), it
may be desirable to require placing the address inside the square
brackets [Text Rep].

Shin, Ed., et al. I nf or mat i onal [Page 13]

RFC 4038 Application Aspects of IPv6 Transition March 2005

A particular problemw th | P address parsers cones when the input is
actually a conbination of I P address and port nunmber. Wth |IPv4
these are often coupled with a colon; for exanple, "192.0.2.1:80".
However, this approach woul d be amnbi guous with I Pv6, as colons are
al ready used to structure the address.

Therefore, the I P address parsers that take the port nunber separated
with a colon should distinguish | Pv6 addresses sonehow. One way is
to enclose the address in brackets, as is done with Uniform Resource
Locators (URLs) [RFC2732]; for exanple, http://[2001: db8::1]: 80.

Sone applications also need to specify |IPv6 prefixes and | engths:
The prefix length should be inserted outside of the square brackets,
if used; for exanple, [2001:db8::]/64 or 2001:db8::/64 and not
[2001: db8::/64]. Note that prefix/length notation is syntactically
i ndi stinguishable froma legal UR; therefore, the prefix/Ilength
notati on must not be used when it isn't clear fromthe context that
it’s used to specify the prefix and I ength and not, for exanple, a
URI .

In sone specific cases, it may be necessary to give a zone identifier
as part of the address; for exanple, fe80::1%th0. In general
applications should not need to parse these identifiers.

The | P address parsers shoul d support enclosing the IPv6 address in
brackets, even when the address is not used in conjunction with a
port nunber. Requiring that the user always give a literal IP
address enclosed in brackets is not recomrended.

Note that sonme applications nmay al so represent |IPv6 address literals
differently; for exanple, SMIP [RFC2821] uses [I|Pv6:2001: db8::1].

Note that the use of address literals is strongly discouraged for
general - purpose direct input to the applications. Host nanmes and DNS
shoul d be used instead.

5.2. Transport Layer API

Conmuni cation applications often include a transport nodul e that

est abl i shes communi cations. Usually this nodul e manages everything
related to comunications and uses a transport-layer APl, typically
as a network library. Wen an application is ported to |IPv6, nost
changes should be nade in this application transport nodul e in order
to be adapted to the new | Pv6 API

Shin, Ed., et al. | nf or mat i onal [Page 14]

RFC 4038 Application Aspects of IPv6 Transition March 2005

In the general case, porting an existing application to IPv6 requires
an examination of the following issues related to the API:

- Network Information Storage: |P address Data Structures
The new structures nust contain 128-bit | P addresses. The use
of generic address structures, which can store any address
famly, is recomended.

Soneti mes speci al addresses are hard-coded in the application
source code. Developers should pay attention to these in order
to use the new address format. Some of these special IP
addresses are wildcard | ocal, |oopback, and broadcast. |Pv6
does not have the broadcast addresses, so applications can use
mul ti cast instead.

- Address Conversion Functions
The address conversion functions convert the binary address
representation to the presentation fornmat and vice versa. The
new conversion functions are specified to the | Pv6 address
format.

- Conmuni cation APl Functions
These functi ons manage conmuni cations. Their signatures are
defined based on a generic socket address structure. The sane
functions are valid for |Pv6; however, the |IP address data
structures used when calling these functions require the
updat es.

- Network Configuration Options
These are used when different comruni cati on nodels are
configured for Input/Qutput (1/O operations
(bl ocki ng/ nonbl ocking, 1/O nultiplexing, etc.) and shoul d be
transl ated for | Pv6.

5.3. Nanme and Address Resol ution

From the application point of view, the name and address resol ution
is a systemindependent process. An application calls functions in a
systemlibrary, the resolver, which is linked into the application
when it is built. However, these functions use |P address
structures, that are protocol dependent and nmust be reviewed to
support the new I Pv6 resolution calls.

Wth I Pv6, there are two new basic resolution functions,
getaddrinfo() and getnanmeinfo(). The first returns a list of al
configured | P addresses for a hostnane. These queries can be
constrained to one protocol famly; for instance, only |IPv4 or only

Shin, Ed., et al. I nf or mat i onal [Page 15]

RFC 4038 Application Aspects of IPv6 Transition March 2005

| Pv6 addresses. However, it is reconmended that all configured IP
addresses be obtained to all ow applications to work with every kind
of node. The second function returns the hostnane associated to an
| P address.

5.4. Specific | P Dependencies
5.4.1. | P Address Sel ection

Unli ke the | Pv4 nodel, IPv6 pronotes the configuration of nultiple IP
addr esses per node, however, applications only use a
destination/source pair for a comunication. Choosing the right IP
source and destination addresses is a key factor that nmay determ ne
the route of | P datagrans.

Typi cal |y, nodes, not applications, automatically solve the source
address selection. A node will choose the source address for a
comuni cation followi ng some rul es of best choice, per [RFC3484], but
will also allow applications to make changes in the ordering rules.

When sel ecting the destination address, applications usually ask a
resolver for the destination |IP address. The resolver returns a set
of valid I P addresses froma hostnane. Unless applications have a
specific reason to select any particular destination address, they
should try each elenent in the [ist until the conmunication succeeds.

In sone cases, the application may need to specify its source
address. The destination address sel ection process picks the best
destination for the source address (instead of picking the best
source address for the chosen destination address). Note that if it
is not yet known which protocol will be used for comunication there
may be an increase in conplexity for |IP version - independent
applications that have to specify the source address (especially for
client applications. Fortunately, specifying the source address is
not typically required).

5.4.2. Application Fram ng

The Application Level Fram ng (ALF) architecture controls mechani sns
that traditionally fall within the transport |ayer. Applications
i npl enenting ALF are often responsi ble for packetizing data into
Application Data Units (ADUs). The application problemwth ALF
arrives fromthe ADU size selection to obtain better performance.

Applications using connectionless protocols (such as UDP) typically
need application fram ng. These applications have three choices: (1)
to use packet sizes no larger than the |IPv6 mnini mum Maxi num

Transni ssion Unit (MIU) of 1280 bytes [RFC2460], (2) to use any

Shin, Ed., et al. I nf or mat i onal [Page 16]

RFC 4038 Application Aspects of IPv6 Transition March 2005

packet sizes, but to force IPv6 fragnentation/reassenbly when
necessary, or (3) to optinize the packet size and avoi d unnecessary
fragmentati on/reassenbly, and to guess or find out the optinmal packet
sizes that can be sent and received, end-to-end, on the network.

This nenp takes no stance on that approach is best.

Note that the nost optinmal ALF depends on dynami c factors such as
Path MIU or whether IPv4 or IPv6 is being used (due to different
header sizes, possible IPv6-in-1Pv4 tunneling overhead, etc.). These
factors have to be taken into considerati on when application fram ng
i s inplenented.

5.4.3. Storage of | P Addresses

Sone applications store | P addresses as renote peer information. For
i nstance, one of the nbst popul ar ways to register renpbte nodes in
col | aborative applications uses |IP addresses as registry keys.

Al t hough the source code that stores |IP addresses can be nodified to
| Pv6 by followi ng the previous basic porting recomrendati ons,
applications should not store |IP addresses for the foll ow ng reasons:

- | P addresses can change throughout tine; for instance, after a
renunbering process.

- The same node can reach a destination host using different IP
addresses, possibly with a different protocol version

When possi bl e, applications should store nanes such as FQ@Ns or other
protocol -i ndependent identities instead of addresses. |In this case
applications are only bound to specific addresses at run time, or for
the duration of a cache lifetine. Oher types of applications, such
as nassive peer-to-peer systens with their own rendezvous and

di scovery nechani sns, may need to cache addresses for perfornmance
reasons, but cached addresses should not be treated as pernmanent,

reliable information. 1In highly dynam c networks, any form of nane
resolution may be inpossible, and here agai n addresses nust be
cached.

5.5. Muilticast Applications

There is an additional problemin porting rulticast applications.
When nulticast facilities are used sone changes nmust be carried out
to support IPv6. First, applications nmust change the |IPv4 multicast
addresses to | Pv6 ones, and second, the socket configuration options
must be changed.

Shin, Ed., et al. | nf or mat i onal [Page 17]

RFC 4038 Application Aspects of IPv6 Transition March 2005

Al'l 1Pv6 nulticast addresses encode scope; the scope was only
inmplicit in IPv4d (with nulticast groups in 239/8). Also, although a
| arge nunber of application-specific nulticast addresses have been
assigned with IPv4, this has been (luckily enough) avoided with | Pv6.
So there are no direct equivalents for all the multicast addresses.
For link-local nulticast, it’s possible to pick al nost anything
within the Iink-1ocal scope. The global groups coul d use unicast
prefix - based addresses [RFC3306]. Al in all, this may force the
application developers to wite nore protocol -dependent code.

Anot her problemis that | Pv6 nulticast does not yet have a

st andar di zed nmechani smfor traditional Any Source Milticast for
Interdonain multicast. The nodels for Any Source Milticast (ASM or
Source-Specific Miulticast (SSM are generally sinilar between |Pv4
and I Pv6, but it is possible that PIMSSMwi || becone nore wi dely
deployed in IPv6 due to its sinpler architecture.

It might be beneficial to port the applications to use SSM semanti cs,
requiring of f-band source discovery nmechani snms and a different API

[RFC3678]. Inter-domain ASM service is available only through a

met hod enbeddi ng t he Rendezvous Point address in the nulticast

addr ess [Enbed- RP].

Anot her generic problemwith multiparty conferencing applications,
simlar to the issues with peer-to-peer applications, is that al
users of the session nust use the sanme protocol version (IPv4 or

| Pv6), or sone formof proxy or translator (e.g., [MIL-GWN).

6. Developing IP Version - |ndependent Applications

As stated, dual applications working with both IPv4 and | Pv6 are
reconmended. These applications should avoid | P dependencies in the
source code. However, if |P dependencies are required, one of the
better solutions would be to build a comunication |ibrary that
provides an | P version - independent APl to applications and that

hi des al |l dependenci es.

To develop I P version - independent applications, the follow ng
gui del i nes shoul d be consi dered.

6.1. |IP Version - |ndependent Structures
Al'l nenory structures and APlIs should be IP version-independent. One

shoul d avoid structs in_addr, in6_addr, sockaddr_in, and
sockaddr _i n6.

Shin, Ed., et al. I nf or mat i onal [Page 18]

RFC 4038 Application Aspects of IPv6 Transition March 2005

6.

2.

Suppose a network address is passed to sonme function, foo(). |If one
uses struct in_addr or struct in6_addr, results an extra paraneter to
i ndi cate address fanmily, as bel ow

struct in_addr indaddr;
struct in6_addr in6addr;
/* 1 Pv4d case */

foo(& nd4addr, AF_I NET);
/* 1 Pv6 case */

foo(& n6addr, AF_|I NET6);

This | eads to duplicated code and having to consi der each scenario
from both perspectives independently, which is difficult to maintain.
So we shoul d use struct sockaddr_storage, as bel ow

struct sockaddr_storage ss;

i nt sslen;

/* AF independent! - use sockaddr when passing a pointer */

/* note: it's typically necessary to also pass the length
explicitly */

foo((struct sockaddr *)é&ss, sslen);

| P Version - |Independent APIs

The new address i ndependent variants getaddrinfo() and getnanei nfo()
hi de the gory details of nane-to-address and address-to-nane
translations. They inplenment functionalities of the foll ow ng
functi ons:

get host bynarme()
get host byaddr ()
get ser vbyname()
get servbyport ()

They al so obsol ete the functionality of gethostbyname2(), defined in
[RFC2133] .

The new variants can perform hostnane/ address and servi ce nane/ port
| ookups, though the features can be turned off, if desired.
Getaddrinfo() can return nultiple addresses, as bel ow

| ocal host. IN A 127.0.0.1
IN A 127.0.0. 2
IN AAAA ::1

In this exanple, if IPv6 is preferred, getaddrinfo first returns ::1
then both 127.0.0.1 and 127.0.0.2 are in a random order.

Shin, Ed., et al. I nf or mat i onal [Page 19]

RFC 4038 Application Aspects of IPv6 Transition March 2005

Get addrinfo() and getnaneinfo() can query hostnane and service
nanme/ port at once.

Har dcodi ng AF-dependent know edge is not preferred in the program
Constructs such as that bel ow shoul d be avoi ded:

/* BAD EXAMPLE */

switch (sa->sa_famly) {

case AF_| NET:
sal en = sizeof (struct sockaddr_in);
br eak;

}

I nst ead, we shoul d use the ai _addrlen nmenber of the addrinfo
structure, as returned by getaddrinfo().

The get hostbynane(), gethostbyaddr(), getservbynanme(), and
getservbyport() are mainly used to get server and client sockets. In
the followi ng sections, we will see sinple exanples creating these
sockets by using the new I Pv6 resol ution functions.

6.2.1. Exanple of Overly Sinplistic TCP Server Application

A sinple TCP server socket at service name (or port number string)
SERVI CE:

/*

* BAD EXAMPLE: does not inplenment the getaddrinfo | oop as

* specified in 6.3. This nay result in one of the follow ng:

* - an | Pv6 server, listening at the wildcard address,

* all owi ng | Pv4 addresses through | Pv4-mapped | Pv6 addresses.
* - an I Pv4 server, if IPv6 is not enabled,

* - an IPv6e-only server, if IPv6 is enabled but |Pv4-napped |Pv6
* addresses are not used by default, or

* - no server at all, if getaddrinfo supports |IPv6, but the

* system doesn’ t, and socket (AF_INET6, ...) exits with an

* error.

*/

struct addrinfo hints, *res;
int error, sockfd;

nmenset (&ints, 0, sizeof (hints));
hints.ai _flags = Al _PASSI VE;
hints.ai _famly = AF_UNSPEC,
hi nts. ai _socktype = SOCK_STREAM
error = getaddrinfo(NULL, SERVICE, &hints, &res);
if (error !'=0)
/* handl e getaddrinfo error */

Shin, Ed., et al. I nf or mat i onal [Page 20]

RFC 4038 Application Aspects of IPv6 Transition March 2005

6.2. 2.

}

sockfd = socket(res->famly, res->ai_socktype, res->ai_protocol);
if (sockfd < 0) {

/* handl e socket error */
}

if (bind(sockfd, res->ai_addr, res->ai _addrlen) < 0) {
/* handl e bind error */

}

[* ... *

freeaddrinfo(res);

Exanpl e of Overly Sinmplistic TCP dient Application

A sinmple TCP client socket connecting to a server running at node
nane (or | P address presentation format) SERVER NODE and service name
(or port nunber string) SERVICE foll ows:

Shi n,

/*

* BAD EXAMPLE: does not inplenment the getaddrinfo | oop as

* specified in 6.3. This nay result in one of the follow ng:

* - an | Pv4 connection to an | Pv4 destination,

* - an | Pv6e connection to an | Pv6 destination,

* - an attenpt to try to reach an I Pv6 destination (if AAAA

* record found), but failing -- without fallbacks -- because:
* 0 getaddrinfo supports IPv6 but the system does not

* o I Pv6 routing doesn't exist, so falling back to e.g., TCP
* ti meouts

* o | Pv6 server reached, but service not |Pv6-enabled or

* firewal | ed awnay

* - if the first destination is not reached, there is no

* fall back to the next records

*/

struct addrinfo hints, *res;
int error, sockfd;

nmenset (&ints, 0, sizeof (hints));
hints.ai _famly = AF_UNSPEC,
hi nts. ai _socktype = SOCK_STREAM

error = getaddrinfo(SERVER NODE, SERVICE, &hints, &res);

if (error !'=0)
/* handl e getaddrinfo error */
}

Ed., et al. | nf or mat i onal [Page 21]

RFC 4038 Application Aspects of IPv6 Transition March 2005

6.

2.

sockfd = socket(res->famly, res->ai_socktype, res->ai_protocol);
if (sockfd < 0) {

/* handl e socket error */
}

i f (connect(sockfd, res->ai_addr, res->ai _addrlen) < 0) {
/* handl e connect error */
}

[* ... *
freeaddrinfo(res);
3. Binary/Presentation Format Conversion

We shoul d consider the binary and presentation address fornat
conversion APIs. The follow ng functions convert network address
structure in its presentation address format and vi ce versa:

i net_ntop()
i net _pton()

Both are fromthe basic socket extensions for |Pv6. However, these
conversion functions are protocol -dependent. It is better to use
get nanei nfo()/getaddrinfo() (inet_pton and inet_ntop equivalents are
descri bed in Appendi x A).

Conversion from network address structure to presentation fornmat can
be witten as foll ows:

struct sockaddr_storage ss;
char addr Str[| NET6_ADDRSTRLEN] ;
char servStr[N _MAXSERV] ;

int error;

/* fill ss structure */

error = getnanei nfo((struct sockaddr *)&ss, sizeof(ss),
addr Str, sizeof(addrStr),
servStr, sizeof(servStr),
NI _NUMERI CHOST) ;

Shin, Ed., et al. | nf or mat i onal [Page 22]

RFC 4038 Application Aspects of IPv6 Transition March 2005

6.

6.

3.

3.

Conversions from presentation format to network address structure can
be witten as foll ows:

struct addrinfo hints, *res;
char addr Str[| NET6_ADDRSTRLEN] ;
int error;

[* fill addrStr buffer */

nmenset (&ints, 0, sizeof (hints));
hints.ai _famly = AF_UNSPEC,

error = getaddrinfo(addrStr, NULL, &hints, &res);
if (error !'=0)

/* handl e getaddrinfo error */
}

/* res->ai _addr contains the network address structure */
[* ... *
freeaddrinfo(res);

Iterated Jobs for Finding the Wrking Address

In a client code, when nmultiple addresses are returned from
getaddrinfo(), we should try all of themuntil connection succeeds.
When a failure occurs with socket(), connect(), bind(), or sone other
function, the code should go on to try the next address.

In addition, if sonething is wong with the socket call because the
address famly is not supported (i.e., in case of section 4.4),
applications should try the next address structure.

Note: In the follow ng exanples, the socket() return value error
handl ing could be sinplified by always continuing on with the socket
| oop instead of perform ng special checking of specific error
nunbers.

1. Exanple of TCP Server Application
The previous TCP server exanple should be witten as foll ows:

#def i ne MAXSOCK 2
struct addrinfo hints, *res;
int error, sockfd[MAXSOCK], nsock=0;

nmenset (&ints, 0, sizeof (hints));
hints.ai _flags = Al _PASSI VE;
hints.ai _famly = AF_UNSPEC,

Shin, Ed., et al. I nf or mat i onal [Page 23]

RFC 4038 Application Aspects of IPv6 Transition March 2005

hi nts. ai _socktype = SOCK_STREAM

error = getaddrinfo(NULL, SERVICE, &hints, &res);
if (error !'=0) {

/* handl e getaddrinfo error */
}

for (aip=res; aip &% nsock < MAXSOCK; ai p=ai p->ai _next) {
sockfd[nsock] = socket(aip->ai_fanily,
ai p- >ai _sockt ype,
ai p->ai _protocol);

i f (sockfd[nsock] < 0) {
switch errno {
case EAFNOSUPPORT
case EPROTONOSUPPCRT:
/*

* e.g., skip the errors until
* the last address famly
* see section 4.4.

*/
i f (ai p->ai_next)
conti nue;
el se {
/* handl e unknown protocol errors */
br eak;
}
defaul t:

/* handl e ot her socket errors */

}

} else {

int on = 1;

/* optional: works better if dual-binding to wildcard
address */

if (aip->ai_famly == AF_I NET6) ({
set sockopt (sockfd[nsock], |PPROTO_I PV6, |PV6_V6ONLY,

(char *)&on, sizeof(on));

/* errors are ignored */

}
i f (bind(sockfd[nsock], aip->ai_addr,
ai p->ai _addrlen) < 0) {
/* handl e bind error */
cl ose(sockfd[nsock]);
conti nue;

Shin, Ed., et al. | nf or mat i onal [Page 24]

RFC 4038 Application Aspects of IPv6 Transition March 2005

if (listen(sockfd[nsock], SOMAXCONN) < 0) {
/* handle listen errors */
cl ose(sockfd[nsock]);
conti nue;

}
}
nsock++;
freeaddrinfo(res);
/* check that we were able to obtain the sockets */
6.3.2. Exanple of TCP Cient Application

The previous TCP client exanple should be witten as foll ows:

struct addrinfo hints, *res, *aip;
i nt sockfd, error;

nmenset (&ints, 0, sizeof (hints));
hints.ai _famly AF_UNSPEC,
hi nts. ai _socktype SOCK_STREAM

error = getaddrinfo(SERVER NCODE, SERVICE, &hints, &res);
if (error '=0) {

/* handl e getaddrinfo error */
}

for (aip=res; aip; aip=aip->ai_next) {

sockfd = socket (ai p->ai _famly
ai p- >ai _sockt ype,
ai p->ai _protocol);

if (sockfd < 0) {
switch errno {
case EAFNOSUPPORT
case EPROTONOSUPPCRT:
/*

* e.g., skip the errors until
* the last address famly
* see section 4.4.

*/
i f (ai p->ai_next)
conti nue;
el se {
/* handl e unknown protocol errors */
br eak;

Shin, Ed., et al. I nf or mat i onal [Page 25]

RFC 4038 Application Aspects of IPv6 Transition March 2005

}

def aul t:
/* handl e ot her socket errors */

}

} else {
i f (connect (sockfd, aip->ai_addr, aip->ai_addrlen) == 0)
br eak;

/* handl e connect errors */
cl ose(sockfd);
sockfd=-1;

}

if (sockfd > 0) {
/* socket connected to server address */

[* 0%
}

freeaddrinfo(res);
Transi ti on Mechani sm Consi der ati ons

The mechani sm [NAT-PT] introduces a special set of addresses, forned
of an NAT-PT prefix and an | Pv4 address these refer to | Pv4 addresses
transl ated by NAT-PT DNS-ALG I n sonme cases, one night be tenpted to
handl e these differently.

However, |1 Pv6 applications nust not be required to distinguish
"normal " and "NAT-PT transl ated" addresses (or any other kind of
speci al addresses, including the |IPv4-mapped | Pv6 addresses): This
woul d be conpletely inpractical, and if the distinction nust be nade,
it must be done el sewhere (e.g., kernel, systemlibraries).

Security Considerations

There are a nunber of security considerations for IPv6 transition
but those are outside the scope of this neno.

To ensure the availability and robustness of the service even when
transitioning to I Pv6, this meno descri bes a nunber of ways to make
applications nore resistant to failures by cycling through addresses
until a working one is found. Doing this properly is critical to
mai ntain availability and to avoid | oss of service.

Shin, Ed., et al. I nf or mat i onal [Page 26]

RFC 4038 Application Aspects of IPv6 Transition March 2005

10.

10.

A special consideration about application transition is how | Pv4-
mapped | Pv6 addresses are handl ed. The use in the APl can be seen
both as a nerit (easier application transition) and as a burden
(difficulty in ensuring whether the use was legitinmate). Note that
some systens will disable (by default) support for internal |Pv4-
mapped | Pv6 addresses. The security concerns regardi ng these on the
wire are legitinmate, but disabling it internally breaks one
transition mechani smfor server applications originally witten to
bind() and listen() to a single socket by using a wildcard address
[VBMAPPED]. This should be considered in nore detail when
applications are designed.

Acknow edgmnent s

Sone of guidelines for devel opment of | P version-independent
applications (section 6) were first brought up by [AF-APP]. O her
work to docunent application porting guidelines has also been in
progress; for exanple, [IP-G&F] and [PRT]. W would like to thank
the nmenbers of the v6ops working group and the application area for
hel pful conments. Special thanks are due to Brian E. Carpenter,
Ant oni 0 Querubin, Stig Venaas, Chirayu Patel, Jordi Palet, and Jason
Lin for extensive review of this docunent. W acknow edge Ron Pike
for proofreading the document.

Ref er ences
1. Normative References

[RFC3493] Glligan, R, Thomson, S., Bound, J., MCann, J., and W
St evens, "Basic Socket |Interface Extensions for |Pv6",
RFC 3493, February 2003.

[RFC3542] Stevens, W, Thomas, M, Nordmark, E., and T. Jinnei
"Advanced Sockets Application ProgramlInterface (APlI) for
| Pv6", RFC 3542, May 2003.

[Bl §] Tsuchiya, K., Hguchi, H, and Y. Atarashi, "Dual Stack
Hosts using the "Bunp-1n-the-Stack"” Technique (BIS)", RFC
2767, February 2000.

[Bl A] Lee, S., Shin, MK, Kim Y-J., Nordmark, E., and A
Durand, "Dual Stack Hosts Using "Bunp-in-the-APlI" (BIA)",
RFC 3338, Cctober 2002.

[RFC2460] Deering, S. and R Hi nden, "Internet Protocol, Version 6
(I Pv6) Specification", RFC 2460, Decenber 1998.

Shin, Ed., et al. | nf or mat i onal [Page 27]

RFC 4038 Application Aspects of IPv6 Transition March 2005

[RFC3484] Draves, R, "Default Address Selection for Internet
Protocol version 6 (IPv6)", RFC 3484, February 2003.

[RFC3513] H nden, R and S. Deering, "lInternet Protocol Version 6
(1'Pv6) Addressing Architecture", RFC 3513, April 2003.

10. 2. I nformati ve Ref erences

[2893BI S] Nordmark, E. and R E. Glligan, "Basic Transition
Mechani snms for |1 Pv6 Hosts and Routers”, Wrk in Progress,
June 2004.

[RFC2133] Glligan, R, Thonson, S., Bound, J., and W Stevens,
"Basi c Socket |Interface Extensions for |Pv6", RFC 2133,
April 1997.

[RFC2732] Hi nden, R, Carpenter, B., and L. Masinter, "Format for
Literal IPv6 Addresses in URL's", RFC 2732, Decenber
1999.

[RFC2821] Klensin, J., "Sinple Mail Transfer Protocol", RFC 2821
April 2001

[Text Rep] Mai n, A., "Textual Representation of |Pv4 and | Pv6
Addr esses", Wrk in Progress, Cctober 2003.

[NAT- PT] Tsirtsis, G and P. Srisuresh, "Network Address
Transl ation - Protocol Translation (NAT-PT)", RFC 2766,
February 2000.

[DNSTRANS] Durand, A. and J. lhren, "DNS | Pv6 Transport Operati onal
Gui del i nes", BCP 91, RFC 3901, Septenber 2004.

[DNSOPV6] Durand, A., lhren, J. and P. Savola, "Operational
Consi derations and Issues with I Pv6 DNS', Wrk in
Progress, My 2004.

[AF- APP] Hagi no, J., "lInplenenting AF-independent application",
http://ww. kane. net/ newsl etter/ 19980604/, 2001

[V6MAPPED] Hagino, J., "IPv4 napped address considered harnful”
Wrk in Progress, April 2002.

[1P-GGH Chown, T., Bound, J., Jiang, S. and P. O Hanl on
"Cuidelines for IP version independence in GGF
specifications", @obal Gid Forun(G&) Docunentation
work in Progress, Septenber 2003.

Shin, Ed., et al. I nf or mat i onal [Page 28]

RFC 4038

[Enbed- RP]

[RFC3306]

[RFC3678]

[MUL- GAY

[PRT]

Shi n,

Ed.,

Application Aspects of IPv6 Transition March 2005

Savol a, P. and B. Habernan, "Enbeddi ng the Rendezvous
Point (RP) Address in an | Pv6 Multicast Address", RFC
3956, Novenber 2004.

Haberman, B. and D. Thal er, "Unicast-Prefix-based |IPv6
Mul ti cast Addresses", RFC 3306, August 2002.

Thaler, D., Fenner, B., and B. Quinn, "Socket Interface
Extensions for Multicast Source Filters, RFC 3678,
January 2004.

Venaas, S., "An IPv4 - |Pv6 nulticast gateway", Wrk in
Progress, February 2003.

Castro, EE M, "Programi ng guidelines on transition to
| Pv6 LONG project”, Wrk in Progress, January 2003.

et al. | nf or mat i onal [Page 29]

RFC 4038 Application Aspects of IPv6 Transition March 2005

Appendi x A. Qher Binary/Presentation Format Conversions

Section 6.2.3 describes the preferred way to perform

bi nary/ presentation format conversions; these can al so be done by
using inet_pton() and inet_ntop() and by witing protocol -dependent
code. This approach is not recommended, but it is provided here for
ref erence and conpari son

Note that inet_ntop()/inet_pton() l|ose the scope identifier (if used,
e.g., with link-local addresses) in the conversions, contrary to the
get addri nfo()/getnanmei nfo() functions.

A.1l. Binary to Presentation Using inet_ntop()

Conversions fromnetwork address structure to presentation format can
be witten as foll ows:

struct sockaddr_storage ss;
char addr Str[| NET6_ADDRSTRLEN] ;

/* fill ss structure */
switch (ss.ss_fanmily) {

case AF_| NET:
i net_ntop(ss.ss_famly
& (struct sockaddr_in *)&ss)->sin_addr,
addr Str,
si zeof (addr Str));
br eak;

case AF_| NET6:
i net_ntop(ss.ss_famly
& (struct sockaddr _in6 *)&ss)->sin6_addr,
addr Str,
si zeof (addrStr));

br eak;

defaul t:
/* handl e unknown famly */

}

Note that, the destination buffer addrStr should be | ong enough to
contain the presentation address format: | NET_ADDRSTRLEN for |Pv4 and
| NET6_ADDRSTRLEN for |IPv6. As |INET6_ADDRSTRLEN i s | onger than

| NET_ADDRSTRLEN, the first one is used as the destination buffer

| engt h.

Shin, Ed., et al. I nf or mat i onal [Page 30]

RFC 4038 Application Aspects of IPv6 Transition March 2005

A.2. Presentation to Binary Using inet_pton()

Conversions from presentation format to network address structure can
be witten as foll ows:

struct sockaddr_storage ss;
struct sockaddr_in *sin;

struct sockaddr _i n6 *sin6;

char addr Str[| NET6_ADDRSTRLEN] ;

[* fill addrStr buffer and ss.ss _famly */

switch (ss.ss_famly) {
case AF_| NET:
sin = (struct sockaddr_in *)&ss;
i net_pton(ss.ss_fanmly,
addr Str,
(sockaddr *)&sin->sin_addr));
br eak;

case AF_| NETG6:
sin6é = (struct sockaddr_in6 *)&ss;
i net_pton(ss.ss_famly,
addr Str,
(sockaddr *)&sin6->sin6_addr);

br eak;
defaul t:
/* handl e unknown famly */
}
Note that, the address famly of the presentation format nust be
known.

Shin, Ed., et al. I nf or mat i onal [Page 31]

RFC 4038 Application Aspects of IPv6 Transition March 2005

Aut hor s’ Addresses

Myung- Ki Shin

ETRI/ NI ST

820 West Di anond Avenue

Gai t hersburg, MD 20899, USA

Phone: +1 301 975-3613
Fax: +1 301 590- 0932
EMai | : nshi n@i st. gov

Yong- Guen Hong
ETRI PEC
161 Gaj eong- Dong, Yuseong- Gu, Daej eon 305-350, Korea

Phone: +82 42 860 6447
Fax: +82 42 861 5404
EMai | : yghong@ec. etri.re.kr

Jun-ichiro itojun HAG NO

Research Laboratory, Internet Initiative Japan Inc.
Takebashi Yasuda Bl dg.,

3-13 Kanda Ni shi ki -cho,

Chi yoda- ku, Tokyo 101- 0054, JAPAN

Phone: +81-3-5259-6350
Fax: +81- 3-5259- 6351
EMail: itojun@ijl ab. net

Pekka Savol a
CSC/ FUNET
Espoo, Finland

EMai | : psavol a@unet. fi

Eva M Castro

Rey Juan Carlos University (URJIC)

Departanmento de Infornmatica, Estadistica y Tel ematica
C/ Tulipan s/n

28933 Madrid - SPAIN

EMai | . eva@syc. escet.urjc.es

Shin, Ed., et al. I nf or mat i onal [Page 32]

RFC 4038 Application Aspects of IPv6 Transition March 2005

Ful I Copyright Statenent
Copyright (C) The Internet Society (2005).

This docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR I'S SPONSORED BY (IF ANY), THE I NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED

| NCLUDI NG BUT NOT LIMTED TO ANY WARRANTY THAT THE USE COF THE

| NFORVATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. |Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nmade to obtain a general |icense or permission for the use of
such proprietary rights by inplenmenters or users of this

speci fication can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that nmay cover technol ogy that nay be required to inplenment
this standard. Please address the information to the IETF at ietf-
ipr@etf.org.

Acknow edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Shin, Ed., et al. I nf or mat i onal [Page 33]

