
cfgparse — python configuration file
parser module

Dan Gass (dan.gass@gmail.com)

April 30, 2005

Version 1.2

Download Source and Documentation:https://sourceforge.net/projects/cfgparse

Requires Python 2.3 -or- Python 2.2 and textwrap module from 2.3

cfgparse is a more convenient, flexible, and powerful module for parsing configuration files than the standard
library ConfigParser module.cfgparse uses a more declarative style modelled after the popularoptparse
standard library module.

cfgparse can optionally cooperate with theoptparse module to provide coordination between command line and
configuration file options. In addition, the cooperation can be used to allow the user to control features of the parser
from the command line.

If you like this module and want to see it in the standard Python distribution, please take the time and add your
comments to the Python Configuration File Parser Shootout wiki:http://www.python.org/moin/ConfigParserShootout.

Standard Features

• Simpleini style configuration syntax

• Type checking with error handling and help messages

• Help summary modelled after that inoptparse

• Round trip - read, modify, write configuration files with comment retention

• Cooperates withoptparse for configuration file options that should be overridden by command line options

Advanced Features

• Supports heirarchically organized option settings

– User may store multiple option settings in a arbitrarily deep keyed dictionary.

– Application uses a key list to walk into the dictionary to obtain a setting.

– User controls key list with setting in configuration file.

– Supports adding keys to the list through a command line option or from environment variables.

• Supports allowing user control of configuration files used.

– Environment variables may be used to allow user to specify a default configuration file.

– Command line options to specify configuration file supported.

– Configuration files may include other configuration files where where sections are read in parallel.

– Configuration files may be nested heirarchically by including configuration files from within a section or
subsection.

• Configuration files may alternatively be written in Python.

– full power and flexibility of Python available for creation of option settings

– allows options settings to be real Python objects

– this feature is NOT enabled by default

• May be extended to support syntax such as XML.

For example:

file: intro.ini
retries = 10

And script:

file: intro.py
import cfgparse
c = cfgparse.ConfigParser()
c.add_option(’retries’, type=’int’)
c.add_file(’intro.ini’)
opts = c.parse()
print ’Number of retries:’,opts.retries

Results in:

$ python intro.py
Number of retries: 10

2

1 Public interface summary

The following classes, methods, and objects are intended to be used directly it is unlikely the interface will change.
The module also contains other publicly available classes, methods, and objects. It is intended that these will be
available for advanced users for use in subclassing the configuration parser. Since this module is relatively new it is
not recommended that these are used at this time since implementation details of this module may change.

• classConfigParser

– __init__ ([description][,allow py] [,formatter][,exception]) ¡2.1¿

– add_file ([cfgfile][,content][,type] [,keys][,parent]) ¡2.2¿

– add_env_file (var) ¡2.2¿

– add_option (name[,help][, type] [, choices][, dest][, metavar][, default] [, check][, keys]) ¡2.3¿

– add_option_group (title [,description]) ¡2.4¿

– parse ([optparser][,args]) ¡2.5¿

– add_optparse_help_option (option group[,switches] [,dest][,help]) ¡3.1¿

– add_optparse_keys_option (option group[,switches] [,dest][,help]) ¡3.3¿

– add_optparse_files_option (option group[,switches] [,dest][,help]) ¡3.4¿

– print_help ([file]) ¡8.1¿

– add_note (note) ¡8.2¿

• classConfigFileIni ¡2.2¿

– get_filename ()

– set_option (name,value[,keys] [,help]) ¡4.2¿

– write (outfile) ¡4.3¿

• classConfigFilePy ¡2.2¿

– get_filename ()

• classOption ¡2.3¿

– get ([keys][,errors]) ¡2.5¿

– set (value[,cfgfile][,keys]) ¡4.1¿

– add_note (note) ¡8.2¿

• classOptionGroup ¡2.4¿

– add_option (name[,help][, type] [, choices][, dest][, metavar][, default] [, check][, keys]) ¡2.3¿

• classIndentedHelpFormatter ¡2.1¿

• classTitledHelpFormatter ¡2.1¿

• SUPPRESS_HELP¡2.3.4¿

3

2 Basics

2.1 Creating the parser

classConfigParser
This class can be used to parse options from user configuration files. A single instance of this class is typically
created. This single instance may be used to parse multiple configuration files and obtain multiple configuration
options.

The constructor for this class is:

ConfigParser ([description][, allow py][, formatter][, exception])
descriptionis an optional string keyword argument and controls the introductory text placed above config-
uration option help text. See ”Option Help” (section 2.3.4).
allow py is an optional boolean keyword argument and when set toTrue , allows Python based configura-
ton files to be read (executed). The default isFalse . Enabling this feature poses a potential security hole
for your application.
formatter is an optional keyword argument and controls the configuration option help text style. Set to
either theIndentedHelpFormatter or TitledHelpFormatter class in thecfgparse module
(or a subclass of either).
exceptionis an optional keyword argument and controls the how user errors are handled by the parser.
If set to False or omitted, errors are written tosys.stderr andsys.exit() is called. If set to
True , theConfigParserUserError exception is raised. Otherwise set this argument to the custom
exception class that should be raised.

In many applications the defaults for constructing an instance ofConfigParser are sufficient.

For example:

file: construct.ini
retries = 10

file: construct.py
import cfgparse
c = cfgparse.ConfigParser()
c.add_option(’retries’, type=’int’)
c.add_file(’construct.ini’)
opts = c.parse()
print ’Number of retries:’,opts.retries

Results in:

$ python construct.py
Number of retries: 10

2.2 Adding Files

Theadd_file() method ofConfigParser is used to add configuration files to the parser. It returns an object
which may be used for modifying option settings in the file and writing the changed file contents.

add_file ([cfgfile][,content][, type][, underkeys])
cfgfile is an optional keyword argument and is used to pass a file name string or a file stream. This argument

4 2 Basics

defaults toNone. See table below for details.

contentis an optional keyword argument and is used to pass a file contents string or a file stream. This argument
defaults toNone. See table below for details.

type is an optional keyword argument used to control the parser used to read the configuration file. Argument
may be set to either’ini’ , ’py’ , or None (default). When set toNone, file name extension is used to
determine type.’py’ causes the file to be read (executed) as Python code otherwise the’ini’ syntax is
assumed.

keysis an optional keyword argument. When omitted,None or an empty list, options read from this file will be
read and stored using the sections as specified in the configuration file. Any keys passed in are used to extend
the section names in the configuration file when the file is read and stored. Note, file is only read and parsed if
keys used to obtain option settings contain all the keys in this list. See ”Keys” (section 6) for more details.

The following table summarizes the legal combinationscfgfileandcontentarguments and the resultingfile nameand
file contentsutilized.

cfgfile content file name file contents
filename None cfgfile file is opened and read
stream None stream.name stream is read
filename stream cfgfile stream is read
None stream ’stream’ stream is read
filename string cfgfile content
None string ’heredoc’ content

Theadd_env_file() method ofConfigParser is used to read a configuration file specified by an environment
variable and returns an object which may be used for modifying option settings in the file and writing the changed
file contents. Forini configuration files the returned object is an instance ofConfigFileIni . If the environment
variable does not exist,None will be returned.

add_env_file (var[,keys])
var is a required positional argument and is the name of the environment variable that contains the configuration
filename to add.keysis an optional keyword argument. When omitted,None or an empty list, options read
from this file will be read and stored using the sections as specified in the configuration file. Any keys passed in
are used to extend the section names in the configuration file when the file is read and stored. Note, file is only
read and parsed if keys used to obtain option settings contain all the keys in this list. See ”Keys” (section 6) for
more details.

2.3 Adding Options

Theadd_option() method ofConfigParser is used to add configuration options to the parser. This is the same
concept as adding options with theoptparse module and shares many of the same arguments (please bring any
inconsistencies to the attention of the author). Defining the options in the configuration parser serves the following
purposes:

• automatic type and value checking

• default values can be defined

• help can be automatically generated in a consistent format

Options must be added to the parser before theparse() method is called. Options may be added before or after files
are added to the parser. The following is theadd_option() method prototype:

2.3 Adding Options 5

add_option (name[, help] [, type] [, choices] [, dest] [, metavar] [, default] [, check] [, keys])
nameis a positional string argument and is the exact name of the configuration option as it is to appear in the
configuration file.

helpis an optional string keyword argument and controls the help text associated with this option displayed when
configuration help is written. Defaults toNone which displays no additional help text beyond the option name
and metavar. This may be set tocfgparse.SUPPRESS_HELP to completely eliminate the option from the
help text. See ”Option help” (section 2.3.4) details. If usingoptparse andcfgparse in cooperation,help
may be omitted here and will automatically be picked up from theoptparse option. See ”Option cooperation”
(section 3.2) for more details.

type is an optional string keyword argument and describes the type which the configuration option is to be
converted into. See ”Option type” (section 2.3.2) for details. If usingoptparse andcfgparse in coopera-
tion, typemay be omitted here and will automatically be picked up from theoptparse option. See ”Option
cooperation” (section 3.2) for more details.

choicesis an optional list keyword argument and is used to pass in the possible choices whentype is set to
’choice’ . See ”Option type” (section 2.3.2) for details. If usingoptparse andcfgparse in cooperation,
choicesmay be omitted here and will automatically be picked up from theoptparse option. See ”Option
cooperation” (section 3.2) for more details.

destis an optional string keyword argument and controls the attribute name that the value of this option will be
stored in when theparse() method creates an options object. This must be a unique value for every added
option. Default isNone which will cause thenameargument to be used as the destination attribute. See ”Name
and destination” (section 2.3.1) for more details. If usingoptparse andcfgparse in cooperation,destmust
exactly match between the two options. See ”Option cooperation” (section 3.2) for more details.

metavaris an optional string keyword argument and is used control the help text associated with this option.
Specifically, this text string is used directly after the(’=’) sign in the option=VALUE. By default thedest
argument in all upper case is used. If usingoptparse andcfgparse in cooperation,metavarmay be omitted
here and will automatically be picked up from theoptparse option. See ”Option cooperation” (section 3.2)
for more details.

default is an optional keyword argument and is used control the configuration option default value when the
configuration option cannot be found. Omitting this option will cause an exception to be raised when the option
cannot be found. If usingoptparse andcfgparse in cooperation,defaultshould NOT be set when adding
theoptparse option. See ”Option cooperation” (section 3.2) for more details.

checkis an optional keyword argument and is used to pass in a function to validate (and possibly convert) the
configuration option. Function interface requirements are defined in ”Option check” (section 2.3.3).

keysis an optional argument and is used to pass in the section keys to obtain the option. Typically this is set
to the section name where the setting is expected to be (the [DEFAULT] section will also be searched as a last
resort). Default isNone which will cause the parser only obtain the option setting from the [DEFAULT] section.
See ”Keys” (section 6) for more details.

2.3.1 Name and Destination

The namestring argument of theadd_option() method is used to specify the name of the option setting to be
obtained from the configuration file.nameis required and is case sensitive, the option name in the configuration file
must exactly match thenameargument.

Theparse() method returns an object with attributes set to the option settings specified using theadd_option()
method. Thedeststring argument is used to control the name of the attribute. Ifdestargument is not present, thename
is used as the attribute name. Each option added must have a unique destination attribute name.

For example:

6 2 Basics

file: name_dest.ini
mail_server = 192.168.0.0
proxy_server = 192.168.0.100

And script:

file: name_dest.py
import cfgparse
c = cfgparse.ConfigParser()
c.add_file(’name_dest.ini’)
c.add_option(’mail_server’)
c.add_option(’proxy_server’, dest=’proxy’)
opts = c.parse()
print ’Mail Server IP Address =’,opts.mail_server
print ’Proxy Server IP Address =’,opts.proxy

Results in:

$ python name_dest.py
Mail Server IP Address = 192.168.0.0
Proxy Server IP Address = 192.168.0.100

2.3.2 Option type

The typestring argument of theadd_option() method is used to specify the convert the option setting obtained
from a configuration file into the desired type. If the configuration option setting cannot be converted to the desired
type appropriate help text will be made available (either an exception is raised orsys.exit() is called dependent
onexception argument when instantiatingConfigParser). The following table shows the legal values:

value result
None no conversion (default)*
’choice’ verifies option setting is a valid choice**
’complex’ converts to complex number
’float’ converts to floating point number
’int’ converts to an integer
’long’ converts to a long integer
’string’ converts to a string

Notes:

* When parsed,ini style configuration files automatically return strings as the option setting and no conversion is
necessary. Python based configuration files return objects. Omitting thetypeargument (or settingtypeto None) allows
the option setting object to remain as is.

** When type is set to’choice’ , thechoicesargument must also be present and must be a list of strings of valid
choices.

For example:

2.3 Adding Options 7

file: type.ini
int_option = 10
float_option = 1.5
choice_option = APPLE

And script:

file: type.py
import cfgparse
c = cfgparse.ConfigParser()
c.add_file(’type.ini’)
c.add_option(’int_option’, type=’int’)
c.add_option(’float_option’, type=’float’)
c.add_option(’choice_option’, type=’choice’, choices=[’APPLE’,’ORANGE’])
opts = c.parse()
print opts.int_option*2
print opts.float_option*3
print opts.choice_option

Results in:

$ python type.py
20
4.5
APPLE

2.3.3 Option check

The checkargument of theadd_option() method is used to provide a function to check the option setting. In
addition the function may also do any further conversions, but it is recommended that thetypeargument be used when
possible. Thecheckfunction must accept a single argument, the option setting. The function must return a tuple
containing the option setting and an error message. If no error, the error message should be set toNone.

For example:

file: check.ini
timeout = 10 # seconds
timeout2 = 101 # invalid

And script:

8 2 Basics

file: check.py

def in_range(value):
error = None
if (value <= 0) or (value >= 100):

error = "’%d’ not valid. Must be between 0 and 100 seconds." % value
value = value * 1000 # convert to milliseconds
return value,error

import cfgparse
c = cfgparse.ConfigParser()
c.add_file(’check.ini’)
c.add_option(’timeout’, type=’int’, check=in_range)
opts = c.parse()
print "Valid timeout:",opts.timeout

c.add_option(’timeout2’, type=’int’, check=in_range)
opts = c.parse()

Results in:

$ python check.py
Valid timeout: 10000
ERROR: Configuration File Parser

Option: timeout2
File: [CWD]/check.ini
Section: [DEFAULT]
Line: 3
’101’ not valid. Must be between 0 and 100 seconds.

2.3.4 Option Help

The help andmetavararguments of theadd_option() method are used to control the configuration option help
text automatically generated by theprint_help() method.

For example:

file: help.py
import cfgparse
c = cfgparse.ConfigParser(description=’Description of the option ’

’configuration.’)
c.add_option(’retries’, type=’int’, help=’Maximum number of retries.’)
c.add_option(’timeout’, type=’int’, metavar=’#SEC’,

help=’Seconds between retries.’)
c.print_help()

Results in:

2.3 Adding Options 9

$ python help.py
Description of the option configuration.

Configuration file options:
retries=RETRIES Maximum number of retries.
timeout=#SEC Seconds between retries.

metavarcontrols the setting representation on the right side of the option/setting pair in the help text. Ifmetavaris
not specified or set toNone the destination attribute name (in upper case) is used. The destination attribute name is
controlled by thenameanddestarguments.

2.3.5 Sections

Configuration files may be organized in sections with each section containing option/value pairs. Thekeysargument
of theadd_option() method can be used to select which section to obtain the option setting from.

For example:

file: sections.ini
[DEFAULT]
all devices use the same driver type
driver = ethernet

[DEV0]
path to device #0
path = 192.168.0.0

[DEV1]
path to device #1
path = 192.168.0.1

And script:

file: sections.py
import cfgparse
c = cfgparse.ConfigParser()
c.add_option(’driver’, dest=’driver0’, keys=’DEV0’)
c.add_option(’driver’, dest=’driver1’, keys=’DEV1’)
c.add_option(’path’, dest=’path0’, keys=’DEV0’)
c.add_option(’path’, dest=’path1’, keys=’DEV1’)
c.add_file(’sections.ini’)
opts = c.parse()
print "DEV0:",opts.driver0,opts.path0
print "DEV1:",opts.driver1,opts.path1

Results in:

$ python sections.py
DEV0: ethernet 192.168.0.0
DEV1: ethernet 192.168.0.1

10 2 Basics

The [DEFAULT] section is special. If an option setting cannot be found in a section specified bykeys, the op-
tion is obtained from the[DEFAULT] section. This section is also utilized ifkeysis not specified. Note, use of
[DEFAULT] is optional. If omitted, option/setting pairs specified before any section declarations are considered part
of the [DEFAULT] section. Although not advisable, multiple sections of the same name may exist and are treated as
one section without error.

2.4 Groups

Theadd_option_group() method can be used to create groups of options. The purpose of grouping options is
strictly for organizing the help text to make it more presentable to the user.

add_option_group (title[,description])
title is a required positional string argument and generally is a few words used to label the configuration option
group.

descriptionis an optional keyword argument and can be used to provide a more lengthy description of the
configuration option group.

add_option_group() returns an instance of theOptionGroup class which has the sameadd_option()
method as the parser.

For example:

import cfgparse
c = cfgparse.ConfigParser()
c.add_option(’opt0’, help=’Help for opt0’)

group = c.add_option_group(’Group 1’)
group.add_option(’opt1’, help=’Help for opt1’)

group = c.add_option_group(’Group 2’,’Some long winded discussion about ’
’group 2 that will not fit all on a single line if that single line ’
’is not extremely wide.’)

group.add_option(’opt2’, help=’Help for opt2’)

c.print_help()

Results in:

$ python groups.py
Configuration file options:

opt0=OPT0 Help for opt0

Group 1:
opt1=OPT1 Help for opt1

Group 2:
Some long winded discussion about group 2 that will not fit all on a
single line if that single line is not extremely wide.

opt2=OPT2 Help for opt2

2.4 Groups 11

2.5 Parsing and Obtaining Options

Configuration file options settings may be obtained either all at once or one at a time. Theparse() method may be
used for obtaining all the option settings all at once and returns the options bundled in a single object as attributes. If
errors are found, appropriate help text will be made available (either an exception is raised orsys.exit() is called
dependent onexception argument when instantiatingConfigParser). This allows errors to be reported to the
user up front.

parse ([optparser][, args])
optparseis an optional keyword argument and is used to pass in an instance of a command line option parser
with which the configuration option parser is to cooperate with. Omitting this argument or setting toNone
avoids interfacing to a command line option parser. When used, theparse() method will return a tuple of the
bundled options object and the command line arguments. The bundled options object will contain the options
from both the command line parser and the configuration files. Presence of this option will also allow enable
the use of other cooperation features documented in ”Command line cooperation” (section 3).

args is an optional keyword argument and are the arguments to be parsed by the command line option parser.
Omitting this argument or setting toNone causes arguments insys.argv (from the command line) to be
utilized.

An alternative method is to get the options as they are needed using theget() method of the object returned by the
add_option() method.

get ([keys][, errors])
keysis an optional keyword argument and is used to pass in additional keys to use obtain the option setting. See
”Keys” (section 6) for more information.

errors is an optional keyword argument. If omitted or set toNone any errors will cause appropriate help text
will be made available (either an exception is raised orsys.exit() is called dependent onexception
argument when instantiatingConfigParser). Otherwise pass a list and help text describing the error will
appended into the list.

For example:

file: parsing.ini
retries = 10

And script:

file: parsing.py
import cfgparse
c = cfgparse.ConfigParser()
c.add_file(’parsing.ini’)

retries = c.add_option(’retries’, type=’int’)
print retries.get()

timeout = c.add_option(’timeout’, type=’int’)
print timeout.get()

Results in:

12 2 Basics

$ python parsing.py
10
ERROR: Configuration File Parser

Option: timeout
No valid default found.
keys=DEFAULT

3 Command line cooperation

Theoptparserandargsarguments of theparse() method are utilized to enable cooperation between the configuation
option parser and an instance of theoptparse .OptionParser class.

When cooperation is enabled the options object created by theparse() method contains attributes for options from
both the command line option parser and the configuration file parser. If the destination attribute name is the same for
an option in both the command line and configuration file option parsers, the parsers will cooperate with one another
as documented in ”Option cooperation” (section 3.2).

3.1 Help switch

Theadd_optparse_help_option() method is used to set up the cooperation between the command line and
configuration file parsers to automatically generate configuration file help text using a command line switch.

add_optparse_help_option (option group[, switches] [, dest][, help])
option group is a required positional argument and must be set to an instance of theoptparse module’s
OptionParser class or an option group of that class. TheOptionParser instance must also be passed
into theparse() method.

switchesis an optional keyword argument and is used to set the command line switches the user can use to
invoke the configuration file help printout.switchesmust be a tuple and defaults to(’--cfghelp’,) when
switchesis omitted.

destis an optional string keyword argument and is used set the name of the destination attribute of the options
object returned by the command line option parser. When omitted,destdefaults to’cfgparse_help’ .

help is an optional string keyword argument and is used to set the command line switch help string. When
omitted a reasonable default help string is utilized.

For example:

file: coop_help.py
import optparse, cfgparse
o = optparse.OptionParser()
c = cfgparse.ConfigParser()

c.add_optparse_help_option(o)
c.add_option(’retries’, type=’int’, help=’Maximum number of retries.’)
c.add_option(’timeout’, type=’int’, metavar=’#SEC’,

help=’Seconds between retries.’)
(opts,args) = c.parse(o)

print "Should not get here if command line help switch present"

13

Results in:

$ python coop_help.py --help
usage: coop_help.py [options]

options:
-h, --help show this help message and exit
--cfghelp Show configuration file help and exit.

$ python coop_help.py --cfghelp
Configuration file options:

retries=RETRIES Maximum number of retries.
timeout=#SEC Seconds between retries.

3.2 Option cooperation

When theoptparserargument of theparse() method is specified, the same option may be controlled by command
line switches or configuration file settings. To enable the cooperation of an option, the destination attribute name must
be the same for both the command line parser option and the configuration parser option.

The cooperation is designed so that command line switches have priority over configuration file settings.IMPOR-
TANT: when adding options to the command line parser using theadd_option() method, omit thedefaultargu-
ment. If it is not omitted the configuration file setting will never be used!

Many of the arguments of the configuration file parseradd_option() method may be omitted if they were specified
when the option was added to the command line parser. When theparse() method of the configuration file parser
is invoked they will be copied from the command line parser options to the configuration file parser options. Sharing
of arguments in theadd_option() method is not bidirectional. The following is a list of arguments which may be
shared:

• help

• type

• choices

• metavar

Option cooperation cross reference information is added to the help text associated with both the command line and
configuration file parsers. In the case of the command line option help, the information states the existance of the
configuration file option. In the case of the configuration file option help, the information states the existance of the
associated command line option.

For example:

file: coop_opt.ini
timeout = 10

And script:

14 3 Command line cooperation

import optparse, cfgparse
o = optparse.OptionParser()
c = cfgparse.ConfigParser()

c.add_optparse_help_option(o)
o.add_option(’--timeout’, type=’int’,

help=’Time between retries in seconds.’)
c.add_option(’timeout’)
c.add_file(’coop_opt.ini’)

(opts,args) = c.parse(o)

print "timeout:",opts.timeout

Results in:

$ python coop_opt.py
timeout: 10

$ python coop_opt.py --timeout=5
timeout: 5

$ python coop_opt.py --help
usage: coop_opt.py [options]

options:
-h, --help show this help message and exit
--cfghelp Show configuration file help and exit.
--timeout=TIMEOUT Time between retries in seconds. See also ’timeout’

option in configuration file help.

$ python coop_opt.py --cfghelp
Configuration file options:

timeout=TIMEOUT Time between retries in seconds. See also ’--timeout’
command line switch.

3.3 Keys switch

Theadd_optparse_keys_option() method is used to set up the cooperation between the command line and
configuration file parsers to allow the user to specify a keys list from the command line to control the keys used to
obtain option settings from the configuration file. For more information on how command line keys are used to obtain
option settings see ”Keys” (section 6).

add_optparse_keys_option (option group[, switches] [, dest] [, help])
option group is a required positional argument and must be set to an instance of theoptparse module’s
OptionParser class or an option group of that class. TheOptionParser instance must also be passed
into theparse() method.

switchesis an optional keyword argument and is used to set the command line switches the user can use to
specify section keys to be used by the parser for finding option settings.switchesmust be a tuple and defaults to
(’-k’,’--keys’,) whenswitchesis omitted.

destis an optional string keyword argument and is used set the name of the destination attribute of the options
object returned by the command line option parser. When omitted,destdefaults to’cfgparse_keys’ .

3.3 Keys switch 15

help is an optional string keyword argument and is used to set the command line switch help string. When
omitted a reasonable default help string is utilized.

For example:

file: coop_keys.ini
[DEV0]
path to device #0
path = 192.168.0.0

[DEV1]
path to device #1
path = 192.168.0.1

And script:

file: coop_keys.py
import optparse
import cfgparse
o = optparse.OptionParser()
c = cfgparse.ConfigParser()
c.add_optparse_keys_option(o)
c.add_option(’path’)
c.add_file(’coop_keys.ini’)
(opts,args) = c.parse(o)
print "Path:",opts.path

Results in:

$ python coop_keys.py
ERROR: Configuration File Parser

Option: path
No valid default found.
keys=DEFAULT

$ python coop_keys.py --keys=DEV0
Path: 192.168.0.0

3.4 Files switch

The add_optparse_files_option() method is used to set up cooperation between the command line and
configuration file parsers to automatically add configuration files to the configuration file parser that were specified
using a command line switch (the files are added when theparse() method is called).

add_optparse_files_option (option group[, switches] [, dest] [, help])
option group is a required positional argument and must be set to an instance of theoptparse module’s
OptionParser class or an option group of that class. TheOptionParser instance must also be passed
into theparse() method.

switchesis an optional keyword argument and is used to set the command line switches the user can use to spec-
ify configuration files to be added to the parser.switchesmust be a tuple and defaults to(’--cfgfiles’,)
whenswitchesis omitted.

16 3 Command line cooperation

destis an optional string keyword argument and is used set the name of the destination attribute of the options
object returned by the command line option parser. When omitted,destdefaults to’cfgparse_files’ .

help is an optional string keyword argument and is used to set the command line switch help string. When
omitted a reasonable default help string is utilized.

For example:

file: coop_files.ini
path = 192.168.0.0

And script:

file: coop_files.py
import optparse
import cfgparse
o = optparse.OptionParser()
c = cfgparse.ConfigParser()
c.add_optparse_files_option(o)
c.add_option(’path’)
(opts,args) = c.parse(o)
print "Path:",opts.path

Results in:

$ python coop_files.py
ERROR: Configuration File Parser

Option: path
No valid default found.
keys=DEFAULT

$ python coop_files.py --cfgfiles=coop_files.ini
Path: 192.168.0.0

4 Round Trip

This module supports read/modify/write ofini style configuration files with comment retention. Two methods ex-
ist for modifying configuration file option settings. The first is theset() method of the object returned from the
ConfigParser classadd_option() method. The second is theset_option() method of the object re-
turned from theConfigParser classadd_file() method. Thewrite() method of the object returned from
the add_file() andset() methods can be used to write the modified file contents. The following subsections
provide more detail.

4.1 set method

Theset() method of the object returned from theadd_option() method of theConfigParser class can be
used to modify an option setting in a configuration file.

set (value,[, cfgfile][, keys])
valueis a required positional argument and is the new option value.

17

cfgfileis an optional keyword argument. If omitted or set toNone the configuration file will be found. Otherwise
the object returned by theadd_file() method may be passed in to modify or add a setting to a specific file.

keysis an optional string keyword argument. Use of this argument is dependent on thecfgfileargument and is
discussed further below.

If cfgfileargument is omitted or set toNone thekeysargument will be used to first get the current option setting. The
keysare used in the same way as they are in theget() method. If a setting cannot be found in any of the configuration
files added,OptionNotFound will be raised. If the setting is found it will be modified and the originating (modified)
file object will be returned. Note, if the option is defined in multiple locations, this method will only modify the one
found.

If cfgfileargument is set, itsset_option() method is called usingvalue. Thename, help, andkeysarguments of
theadd_option() method that created the objectset() was invoked on are passed on toset_option() . If
keysof theset() method was not omitted those keys are used instead.

For example:

[DEFAULT]
this section applies to all devices
timeout = 10 # in seconds
retries = 3

[DEV0]
this section if for settings specific to device #0
retries = 5 # overrides default

And script:

import cfgparse,sys
c = cfgparse.ConfigParser()
f = c.add_file(’set.ini’)
r = c.add_option(’retries’,type=’int’,keys=’DEV0’)
t = c.add_option(’timeout’,type=’int’,keys=’DEV0’,

help=’Time between retries in seconds.’)
r.set(7)
t.set(20)
f.write(sys.stdout)

Results in:

$ python set1.py
[DEFAULT]
this section applies to all devices
timeout = 20 # in seconds
retries = 3

[DEV0]
this section if for settings specific to device #0
retries = 7 # overrides default

Thetimeout option in the[DEFAULT] section was modified. This is due tocfgfilenot being specified. The option
setting was located using the same methodology as theget() method and that option was modified. If this behavior
is not desired, use thecfgfileargument.

18 4 Round Trip

For example:

import cfgparse,sys
c = cfgparse.ConfigParser()
f = c.add_file(’set.ini’)
r = c.add_option(’retries’,type=’int’,keys=’DEV1’,

help=’Number of times to try again.’)
t = c.add_option(’timeout’,type=’int’,keys=’DEV0’,

help=’Time between retries in seconds.’)
r.set(7,f)
t.set(20,f)
f.write(sys.stdout)

Results in:

$ python set2.py
[DEFAULT]
this section applies to all devices
timeout = 10 # in seconds
retries = 3

[DEV0]
this section if for settings specific to device #0
retries = 5 # overrides default

Time between retries in seconds.
timeout = 20

[DEV1]

Number of times to try again.
retries = 7

The above example also demonstrates the creation of new sections as necessary by modifying theretries option
with theDEV1key.

4.2 set option method

Theset_option() method of the object returned from theadd_file() method of theConfigParser class
can be used to modify an option setting in a specific configuration file. This method offers more direct control of
which section the option to be set is located in. If the option is not in the section specified, the option will be added to
that section. If multiple copies of the option exist in the desired section, all copies will be updated. This method does
not return anything.

set_option (name, value[, keys][, help])
nameis a required positional argument and is the name of the option to set the value of.

valueis a required positional argument and is the new option value.

keysis an optional keyword argument. This key list identifies the configuration file section where option is
located or to be added.

help is an optional string keyword argument. This string is placed ahead of an option setting if it is necessary to
add the option to a section.

For example:

4.2 set option method 19

[DEFAULT]

this section applies to all devices
timeout = 10 # in seconds
retries = 3

[DEV0]

this section if for settings specific to device #0
retries = 5 # overrides default

And script:

import cfgparse,sys
c = cfgparse.ConfigParser()
f = c.add_file(’set_option.ini’)
f.set_option(’retries’,6)
f.set_option(’retries’,10,keys=’DEV0’)
f.set_option(’retries’,100,keys=’DEV1’,help=’In new section’)
f.write(sys.stdout)

Results in:

$ python set_option.py
[DEFAULT]

this section applies to all devices
timeout = 10 # in seconds
retries = 6

[DEV0]

this section if for settings specific to device #0
retries = 10 # overrides default

[DEV1]

In new section
retries = 100

4.3 write method

A write() method can be used to write the reconstructed file contents with the new settings, options, and poten-
tially sections. This write method is available in the file object that is returned by theadd_file() method of the
ConfigParser or theset() method of an option object.

write (file)
file is a required positional argument. Iffile is a file object, the reconstructed file contents will be written using

20 4 Round Trip

the file object’swrite() method. Otherwise it is expected thatfile is a file name string and the file will be
opened and written to.

The two previous sections show example uses of this method.

5 INI Syntax Summary

5.1 Comments

Comments in the configuration file should start with the ’#’ character and continue until the end of that line. Comments
may be placed anywhere within the file including on same lines as section names or option settings.

Although not recommended, lines of text without an ’=’ sign are ignored and can be considered comments.

5.2 Option settings

Lines containing an ’=’ sign are interpretted to be option settings. The line is stripped of comments and split on the
first ’=’. Both the option name and setting are stripped of leading and trailing white space.

Multiline settings may exist with the use of XML notation to encapsulate the setting. The and<v> tags are
available for this purpose. The tag is short for ”block” and is useful for most purposes. The<v> tag is short for
”verbatim” and is the same as block except that text encapsulated is not subjected to the text substitution algorithms
described in ”Text Substitution” (section 5.5). The and<v> tags may not be nested within themselves.<v> takes
precedence over.

Option names are case sensitive and may not contain the[] = characters nor use the ¡b¿ or ¡v¿ tags.

For example:

opt1 = simple # comment
opt2=simple # same

opt3 = # not a comment (actually line 0 of setting)
Line 1 of a multi-line setting
Line 2 of a multi-line setting
 # comment can go here

5.3 Sections

A configuration file may contain one or more sections to store multiple settings of the same option. A section is
started with a line that contains a section name enclosed in [] and all option settings that follow are part of that section
until the next section is reached. If the file contains no section names all settings are deposited into the[DEFAULT]
section. If options settings exist before the first section in a file, those option settings are a part of the[DEFAULT]
section. Simple section names can be considered as keys into a dictionary.

For example:

21

[DEFAULT]
opt1 = v_default

[section1]
opt1 = v_section1

Can be thought of as:

opt1 = { ’DEFAULT’ : ’v_default’,
’section1’ : ’v_section1’ }

5.4 Section keys

Section names may consist of one or more keys. Commas and periods in a section name are used to split the section
name into its component keys. If a period or a comma is not to be treated as a key split point, encapsulate the section
components with single or double quotes. If one component is encapsulated, all must be encapsulated. Keys within
the section name can be considered as keys into a dictionary.

For example:

path = 192.168.0.99

[rack0.dev0]
path = 192.168.0.0

[rack0.dev1]
path = 192.168.0.1

[’lab1.rack0’,’dev0’]
path = 192.168.0.2

[’lab1.rack0’,’dev1’]
path = 192.168.0.3

Can be thought of as:

path = { ’DEFAULT’ : ’192.168.0.99’,
’rack0’ : {

’dev0’ : ’192.168.0.0’,
’dev1’ : ’192.168.0.1’ },

’lab1.rack0’ : {
’dev0’ : ’192.168.0.2’,
’dev1’ : ’192.168.0.3’ } }

But syntax is available to extend the section keys with the section name notation immediately following the option
name so that the above example could have been written as:

22 5 INI Syntax Summary

path = 192.168.0.99

[rack0]
path[dev0] = 192.168.0.0
path[dev1] = 192.168.0.1

[’lab1.rack0’]
path[dev0] = 192.168.0.2
path[dev1] = 192.168.0.3

5.5 Text substitution

Text in an option setting may include text from other option settings. String substitutions are implemented using
Python’s mapped key string formatting style. The name of the option to use to substitute text is containted within the
string formatting code.

For example:

path = %(base)s\site-packages
base = C:\Python24\lib

Is equivalent to:

path = C:\Python24\lib\site-packages

The text substitution option must exist in the same section or in the[DEFAULT] section.

For example, this works:

[DEFAULT]
base = C:\Python24\lib
[SECTION1]
path = %(base)s\site-packages

But this does not:

[SECTION0]
base = C:\Python24\lib
[SECTION1]
path = %(base)s\site-packages

Nesting is only allowed up to 10 levels deep in order to prevent endless loops.

5.6 Including Files

Configuration files may include other configuration files. The format is the same as an option/setting pair except a
special<include> option name is used.

5.5 Text substitution 23

For example:

file1.ini
[DEFAULT]
<include> = file2.ini
retries = 3

file2.ini
[DEFAULT]
timeout = 10

Is equivalent to:

file1.ini
[DEFAULT]
timeout = 10
retries = 3

Inclusion of configuration files from within a section is the same as if the settings in the included file were defined
within that section. If the included file contains sections, those section names are extended.

For example:

system.ini
[RACK0]
<include> = rack0.ini

rack0.ini
[DEFAULT]
desc = ’main rack’
[DEV0]
path = 192.168.0.0
[DEV1]
path = 192.168.0.1

Is equivalent to:

system.ini
[RACK0]
desc = ’main rack’
[RACK0.DEV0]
path = 192.168.0.0
[RACK0.DEV1]
path = 192.168.0.1

The extended section key syntax may also be used with the<include> special option. For example, using rack0.ini
from the last example:

24 5 INI Syntax Summary

system.ini
[DEFAULT]
<include>[RACK0] = rack0.ini

Is equivalent to:

system.ini
[RACK0]
desc = ’main rack’
path[DEV0] = 192.168.0.0
path[DEV1] = 192.168.0.1

Configuration files included within sections are not necessarily read immediately (or ever). The included files are
added to a pending list and are only read if all the section keys that it is associated with are in the active key list for a
particular option being requested when theparse() or get() methods are called.

5.7 Default keys

The [DEFAULT] section may contain a special<keys> option/setting pair that can be used to provide a default list
of section keys to use to obtain options.<keys> found in sections other than[DEFAULT] are ignored.

For example:

system.ini
[DEFAULT]
<keys> = RACK0,DEV1
desc = ’default description’
[RACK0]
desc = ’main rack’
path[DEV0] = 192.168.0.0
path[DEV1] = 192.168.0.1

Is equivalent to:

system.ini
[DEFAULT]
path = 192.168.0.1
desc = ’main rack’
[RACK0]
desc = ’main rack’
path[DEV0] = 192.168.0.0
path[DEV1] = 192.168.0.1

This provides a convenient mechanism for the user to quickly make default selections without needing to reorganize
or copy sections of the configuration file. The<keys> keys list may contain many keys and need not be an exact
section name. Order is important but in the example above it could have been reversed with no ill effect. See ”Keys”
(section 6) for more information.

5.7 Default keys 25

5.8 Environment keys

The [DEFAULT] section may contain a special<keys_variable> option/setting pair that can be used to specify
an environment variable name to be used to provide a default list of section keys to use to obtain options.<keys_-
variable> found in sections other than[DEFAULT] are ignored.

For example, setting the keys environment variable from the command line:

Linux: $ export keys=RACK0,DEV1
DOS: C:\> set keys=RACK0,DEV1

Makes:

system.ini
[DEFAULT]
<keys_variable> = keys
desc = ’default description’
[RACK0]
desc = ’main rack’
path[DEV0] = 192.168.0.0
path[DEV1] = 192.168.0.1

Equivalent to:

system.ini
[DEFAULT]
path = 192.168.0.1
desc = ’main rack’
[RACK0]
desc = ’main rack’
path[DEV0] = 192.168.0.0
path[DEV1] = 192.168.0.1

6 Keys

When configuration files are read, all option settings are merged together in a master dictionary that is heirarchically
organized using the section keys as keys in the dictionary. The ”Sections” (section 5.3) and ”Section keys” (section 5.4)
examples may help visualize this concept. When duplicate options exist at the same level, either in the same file or
different files, the last one in wins.

When theparse() method is called or when an optionget() method is called a list of keys is constructed to walk
through the dictionary of settings. The key list is constructed in the following order with the keys with top priority
listed first

• get() keysargument (see section 2.5 ”Parsing”)

• add_option() keysargument (see section 2.3 ”Adding options”)

• command line keys (see section 3 ”Command line cooperation”)

• environment keys (see section 5.8 ”Environment keys”)

26 6 Keys

• configuration file keys (see section 5.7 ”Default keys”)

• ’DEFAULT’ key

The algorithm for obtaining a setting from the dictionary of heirarchically organized settings is:

start at top of option dictionary
start at top of key list <-----------------------
get next key <------------------------------- |

no keys left) DONE - no setting found | |
is key in dictionary? | |

no) ------------------------------------ |
yes) is setting a dictionary? |

yes) proceed to next level --------------
no) DONE - setting found

This implementation allows the user to store multiple settings in the configuration file and provides great flexibility
for controlling which settings get used.

7 Python configuration files

Python based configuration files may be used in place of or in combination withini configuration files. Since this
may introduce a security hole in your application, this feature must be enabled using theallow py argument when
creating an instance of theConfigParser .

Use of Python to construct option settings allows the greatest flexibility but also requires a bit more sophisticated
user as the configuration file is truly a Python script and is executed. One significant advantage of a Python based
configuration file is that settings may be Python objects. For example in an application where files need to be located
it may be tempting to ask the user to provide a string which contains a list of paths to scan. What happens if the user
wants a set of text files that contains lists of files (such as Visual Studio project files) scanned instead? It would be
better to provide a base class that is your best guess as to what most users need. Most users could then make the
settting an instance of that class passing in the string of paths into the constructor. Advanced users can would be able
to subclass it, maintaining the interface, but changing the implementation to their particular needs.

Another significant advantage is that users can construct settings on the fly with the full power and flexibility of Python.
There are no special text substitution techniques like theini syntax since the user can use Python to do it.

Default Keys

KEYSis used instead of<keys> . For example:

KEYS = ’RACK0,DEV0’

Ie equivalent to:

[DEFAULT]
<keys> = RACK0,DEV0

Environment keys

KEYS_VARIABLEis used instead of<keys_variable> . For example:

KEYS_VARIABLE = ’keys’

Ie equivalent to:

27

[DEFAULT]
<keys_variable> = keys

Includes

CONFIG_FILES is used instead of<include> . For example:

CONFIG_FILES = ’file1.ini’

Is equivalent to:

[DEFAULT]
<include> = file1.ini

And:

CONFIG_FILES = [’file2.ini’,’file3.py’]

Is equivalent to:

[DEFAULT]
<include> = file2.ini
<include> = file3.ini

And:

CONFIG_FILES = { ’DEFAULT’ : ’rack0.ini’,
’RACK1’ : ’rack1.ini’,
’RACK2’ : ’rack2.ini’ }

Is equivalent to:

[DEFAULT]
<include> = rack0.ini
[RACK1]
<include> = rack1.ini
[RACK2]
<include> = rack2.ini

Settings

After execution of the configuration file all remaining options found that do not begin with an underscore () are
considered to be an option setting. To avoid polluting the settings dictionary the configuration files should either clean
up after itself or name intermediate variables with an underscore. For example:

import with leading underscore to avoid cleanup later
import os as _os

for x in range(10):
pass # do something

del x # clean up so don’t need leading _

28 7 Python configuration files

driver = ’ethernet’
path = { ’DEFAULT’ : ’192.168.0.99’,

’DEV0’ : ’192.168.0.0’,
’DEV1’ : ’192.168.0.1’ }

Ie equivalent to:

[DEFAULT]
driver = ’ethernet’
path = 192.168.0.99
[DEV0]
path = 192.168.0.0
[DEV1]
path = 192.168.0.1

8 misc

8.1 Printing help

The print_help method can automatically generate help information for all the added options just like the
optparse command line parserprint_help method.

print_help ([file])
file is an optional keyword argument. If omitted, the generated help will be written tosys.stdout . Otherwise
file is a expected to be a file object and the generated help will be written using the file object’swrite()
method.

8.2 Help Notes

Theadd_note method of theConfigParser may be used to append preformatted text to the help text.

add_note (note)
noteis a positional string argument and is the preformatted text to be appended to the end of the generated help
text.

The add_note method of instances of an option object returned by theadd_option method (same prototype)
performs the same action but also causes the preformatted text to be printed if an error occurs when option is retrieved.
Also the preformatted text is inserted as a comment above option settings added to configuration files.

8.3 History

The roots of this module began with a different configuration parser written by the same author
(http://sourceforge.net/projects/config-py). This module contained some of the core design blending option settings
from multiple files and the use of section keys for flexible option storage and retrieval. Since that time a need for
coordination between the command line and configuration file option parsers caused an evolution of the interface to
be modelled after theoptparse module. Perhaps modelled is a bit weak of an acknowledgment because all of the
help formatting code was borrowed almost verbatim from that module. Theini syntax was added so that the module
would be a viable candidate in the ConfigParserShootout activity (http://www.python.org/moin/ConfigParserShootout)
which hopes to produce a new configuration parser module for inclusion in the standard library of a future Python
release.

29

