
The Parma Polyhedra Library
OCaml Language Interface

User’s Manual∗

(version 1.2)

Roberto Bagnara†

Patricia M. Hill‡
Enea Zaffanella§

Abramo Bagnara¶

April 19, 2016

∗This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification
of Reactive Systems”; MURST project “Abstract Interpretation: Design and Applications”; EPSRC project “Numerical Domains for
Software Analysis”; EPSRC project “Geometric Abstractions for Scalable Program Analyzers”.
†bagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy, and BUGSENG srl.
‡patricia.hill@bugseng.com, BUGSENG srl.
§zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy, and BUGSENG srl.
¶abramo.bagnara@bugseng.com, BUGSENG srl.

Copyright © 2001–2010 Roberto Bagnara (bagnara@cs.unipr.it)
Copyright © 2010–2016 BUGSENG srl (http://bugseng.com)

This document describes the Parma Polyhedra Library (PPL).
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

If you have not received a copy of one or both the above mentioned licenses along with the PPL, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.

For the most up-to-date information see the Parma Polyhedra Library site:

http://bugseng.com/products/ppl/

3

http://www.fsf.org
http://www.fsf.org
http://bugseng.com/products/ppl/

Contents
1 OCaml Language Interface 1

2 Module Ppl ocaml globals 16

3 GNU General Public License 21

4 GNU Free Documentation License 29

5 Module Index 34
5.1 Modules . 34

6 Module Documentation 34
6.1 OCaml Language Interface . 34

Index 35

The PPL OCaml Language Interface User’s Manual (version 1.2). See http://bugseng.com for more information.

http://bugseng.com

1 OCaml Language Interface
The Parma Polyhedra Library comes equipped with an interface for the OCaml language.

The main features of the library are described in Section OCaml Interface Features. Section OCamldoc
Documentation lists all the functions available to the default generated domains in the OCaml interface.
Section Compilation and Installation explains how the OCaml interface is compiled and installed.

In the sequel, prefix is the prefix under which you have installed the library (typically /usr or
/usr/local).

OCaml Interface Features
The OCaml interface provides access to the numerical abstractions (convex polyhedra, BD shapes, octag-
onal shapes, etc.) implemented by the PPL library. A general introduction to the numerical abstractions,
their representation in the PPL and the operations provided by the PPL is given in the main PPL user
manual. Here we just describe those aspects that are specific to the OCaml interface.

Overview

First, here is a list of notes with general information and advice on the use of the OCaml interface.

• The numerical abstract domains available to the OCaml user consist of the simple domains, powersets
of a simple domain and products of simple domains.

– The simple domains are:

* convex polyhedra, which consist of C Polyhedron and NNC Polyhedron;

* weakly relational, which consist of BD Shape N and Octagonal Shape N where N is one
of the numeric types short, signed char, int, long, long long, mpz class, mpq class;

* boxes which consist of Int8 Box, Int16 Box, Int32 Box, Int64 Box, Uint8 Box, Uint16←↩

Box, Uint32 Box, Uint64 Box, Double Box, Long Double Box, Z Box, Rational Box,
Float Box; and

* the Grid domain.

– The powerset domains are Pointset Powerset S where S is a simple domain.

– The product domains consist of Direct Product S T, Smash Product S T and Constraints ←↩

Product S T where S and T are simple domains.

• In the following, any of the above numerical abstract domains is called a PPL domain and any
element of a PPL domain is called a PPL object.

• The OCaml interface files are all installed in the directory prefix/lib/ppl. Since this includes
shared and dynamically loaded libraries, you must make your dynamic linker/loader aware of this
fact. If you use a GNU/Linux system, try the commands man ld.so and man ldconfig for
more information.

• A PPL object such as a polyhedron can only be accessed by means of a OCaml term called a handle.
Note, however, that the data structure of a handle, is implementation-dependent, system-dependent
and version-dependent, and, for this reason, deliberately left unspecified. What we do guarantee is
that the handle requires very little memory.

• An OCaml program can obtain a valid handle for a PPL object by using functions such as

ppl new C Polyhedron from space dimension,
ppl new C Polyhedron from C Polyhedron,
ppl new C Polyhedron from constraints,
ppl new C Polyhedron from generators.

1

These functions will return a new handle for referencing a PPL polyhedron.

• For a PPL object with space dimension k, the identifiers used for the PPL variables must lie between
0 and k− 1 and correspond to the indices of the associated Cartesian axes. For example, when using
the functions that combine PPL polyhedra or add constraints or generators to a representation of a
PPL polyhedron, the polyhedra referenced and any constraints or generators in the call should follow
all the (space) dimension-compatibility rules stated in Section Representations of Convex Polyhedra
of the main PPL user manual.

• As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in Section Representations of Convex Polyhedra of the main PPL user
manual.

• Any application using the PPL should make sure that only the intended version(s) of the library are
ever used. Functions

ppl version major,
ppl version minor,
ppl version revision,
ppl version beta,
ppl version,
ppl banner.

allow run-time checking of information about the version being used.

Function Descriptions

Below is a short description of many of the interface functions. For full definitions of terminology used
here, see the main PPL user manual.

Domain Independent Functions
First we describe some domain independent functions included with all instantiations of the OCaml inter-
faces.

ppl version major

Returns the major number of the PPL version.

ppl version minor

Returns the minor number of the PPL version.

ppl version revision

Returns the revision number of the PPL version.

ppl version beta

Returns the beta number of the PPL version.

ppl version

Returns the PPL version.

2

ppl banner

Returns information about the PPL version, the licensing, the lack of any warranty whatsoever, the C++
compiler used to build the library, where to report bugs and where to look for further information.

ppl max space dimension

Returns the maximum space dimension the C++ interface can handle.

ppl Coefficient bits

Returns the number of bits used in the C++ interface for PPL coefficients; 0 if unbounded.

ppl Coefficient is bounded

Returns true if and only if the coefficients in the C++ interface are bounded.

ppl Coefficient max

If the coefficients are bounded, returns the maximum coefficient the C++ interface can handle.

ppl Coefficient min

If the coefficients are bounded, returns the minimum coefficient the C++ interface can handle.

ppl io wrap string source string indent depth preferred first line length preferred←↩

line length

Utility function for the wrapping of lines of text. The function wraps the lines of text stored in its first string
argument according to the next three integer arguments, which are interpreted as the indentation depth, the
preferred length for the first line and the preferred length for all the other lines, respecively; it returns a
string containing the wrapped text.

ppl set timeout csecs

Computations taking exponential time will be interrupted some time after csecs centiseconds after that
call. If the computation is interrupted that way, a timeout exception will be thrown. An exception is
immediately thrown if csecs is not strictly greater than zero, or if the PPL Watchdog library is not
enabled.

ppl reset timeout

Resets the timeout time so that the computation is not interrupted. An exception is thrown if the PPL
Watchdog library is not enabled.

ppl set deterministic timeout unscaled weight scale

Computations taking exponential time will be interrupted some time after reaching the complexity thresh-
old weight = unscaled weight · 2scale. If the computation is interrupted that way, a timeout exception
will be thrown. unscaled weight must be strictly greater than zero; scale must be non-negative; an
exception is thrown if the computed weight threshold exceeds the maximum allowed value. NOTE: This
”timeout” checking functionality is said to be deterministic because it is not based on actual elapsed time.
Its behavior will only depend on (some of the) computations performed in the PPL library and it will be
otherwise independent from the computation environment (CPU, operating system, compiler, etc.). The
weight mechanism is under beta testing: client applications should be ready to reconsider the tuning of
these weight thresholds when upgrading to newer version of the PPL.

3

ppl reset deterministic timeout

Resets the timeout time so that the computation is not interrupted. An exception is thrown if the PPL
Watchdog library is not enabled.

ppl set rounding for PPL

Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.
This is performed automatically at initialization-time. Calling this function is needed only if restore ←↩

pre PPL rounding has previously been called.

ppl restore pre PPL rounding

Sets the FPU rounding mode as it was before initialization of the PPL. After calling this function it is ab-
solutely necessary to call set rounding for PPL before using any PPL abstractions based on floating
point numbers. This is performed automatically at finalization-time.

ppl irrational precision

Returns the precision parameter for irrational calculations.

ppl set irrational precision

Sets the precision parameter p for irrational calculations. In the following irrational calculations returning
an unbounded rational (e.g., when computing a square root), the lesser between numerator and denominator
will be limited to 2∗∗p.

MIP Functions
Here we describe some functions available for PPL objects defining mixed integer (linear) programming
problems.

ppl new MIP Problem from space dimension dimension

Return a handle to an MIP Problem MIP with the feasible region the vector space of dimension dimension,
objective function 0 and optimization mode max.

ppl new MIP Problem dimension constraint system lin expr optimization mode

Return a handle to an MIP Problem MIP having space dimension dimension, a feasible region repre-
sented by constraint system, objective function lin expr and optimization mode optimization←↩

mode.

ppl MIP Problem get control parameter handle param name

Returns the value of the control parameter named param name.

ppl MIP Problem set control parameter handle param value

Sets control parameter value param value.

ppl MIP Problem swap handle 1 handle 2

Swaps the MIP Problem referenced by handle 1 with the one referenced by handle 2.

4

ppl MIP Problem space dimension handle

Returns the dimension of the vector space in which the MIP Problem referenced by handle is embedded.

ppl MIP Problem integer space dimensions handle

Returns a list of variables representing representing the integer space dimensions of the MIP Problem
referenced by handle.

ppl MIP Problem constraints handle

Returns a list of the constraints in the constraints system representing the feasible region for the MIP
Problem referenced by handle.

ppl MIP Problem objective function handle

Returns the objective function for the MIP Problem referenced by handle.

ppl MIP Problem optimization mode handle

Returns the optimization mode for the MIP Problem referenced by handle.

ppl MIP Problem clear handle

Resets the MIP problem referenced by handle to be the trivial problem with the feasible region the
0-dimensional universe, objective function 0 and optimization mode Maximization.

ppl MIP Problem add space dimensions and embed handle dimension

Embeds the MIP problem referenced by handle in a space that is enlarged by dimension dimensions,

ppl MIP Problem add to integer space dimensions handle vars list

Updates the MIP Problem referenced by handle so that the variables in vars list are added to the set
of integer space dimensions.

ppl MIP Problem add constraint handle constraint

Updates the MIP Problem referenced by handle so that the feasible region is represented by the original
constraint system together with the constraint constraint.

ppl MIP Problem add constraints handle constraint system

Updates the MIP Problem referenced by handle so that the feasible region is represented by the original
constraint system together with all the constraints in constraint system.

ppl MIP Problem set objective function handle lin expr

Updates the MIP Problem referenced by handle so that the objective function is changed to lin expr.

ppl MIP Problem set optimization mode handle optimization mode

Updates the MIP Problem referenced by handle so that the optimization mode is changed to optimization←↩

mode.

5

ppl MIP Problem is satisfiable handle

Returns true if the MIP Problem referenced by handle is satisfiable and false otherwise.

ppl MIP Problem solve handle

Solves the MIP problem referenced by handle and returns 0, if the MIP problem is not satisfiable; 1, if
the MIP problem is satisfiable but there is no finite bound to the value of the objective function; 2, if the
MIP problem admits an optimal solution.

ppl MIP Problem feasible point handle

Returns a feasible point for the MIP problem referenced by handle.

ppl MIP Problem optimizing point handle

Returns an optimizing point for the MIP problem referenced by handle.

ppl MIP Problem optimal value handle

Returns a pair of numbers, the first being the numerator and the second the denominator, for the optimal
value for the MIP problem referenced by handle.

ppl MIP Problem evaluate objective function handle generator

Evaluates the objective function of the MIP problem referenced by handle at point generator. Returns
a pair of numbers, the first being the numerator and the second the denominator, for the objective function
value for the MIP problem referenced by handle.

ppl MIP Problem OK handle

Returns true if the MIP Problem referenced by handle is well formed, i.e., if it satisfies all its implemen-
tation invariants and false, otherwise. Useful for debugging purposes.

ppl MIP Problem ascii dump handle

Returns a string containing an ASCII dump of the internal representation of the MIP Problem referenced
by handle. Useful for debugging purposes.

PIP Functions
Here we describe some functions available for PPL objects defining parametric integer programming prob-
lems.

ppl new PIP Problem from space dimension dimension

Return a handle to a PIP Problem PIP with the feasible region the vector space of dimension dimension,
empty constraint system and empty set of parametric variables.

ppl new PIP Problem dimension constraint system vars list

Return a handle to a PIP Problem PIP having space dimension dimension, a feasible region represented
by constraint system and parametric variables represented by vars list.

6

ppl PIP Problem get control parameter handle param name

Returns the value of the control parameter named param name.

ppl PIP Problem set control parameter handle param value

Sets control parameter value param value.

ppl PIP Problem swap handle 1 handle 2

Swaps the PIP Problem referenced by handle 1 with the one referenced by handle 2.

ppl PIP Problem space dimension handle

Returns the dimension of the vector space in which the PIP Problem referenced by handle is embedded.

ppl PIP Problem parameter space dimensions handle

Returns a list of variables representing representing the parameter space dimensions of the PIP Problem
referenced by handle.

ppl PIP Problem constraints handle

Returns a list of the constraints in the constraints system representing the feasible region for the PI←↩

P Problem referenced by handle.

ppl PIP Problem clear handle

Resets the PIP problem referenced by handle to be the trivial problem with space dimension 0.

ppl PIP Problem add space dimensions and embed handle dimension 0 dimension←↩

1

Embeds the PIP problem referenced by handle in a space that is enlarged by dimension 0 non-
parameter dimensions and dimension 1 parameter dimensions,

ppl PIP Problem add to parameter space dimensions handle vars list

Sets the space dimensions whose indexes are in vars list to be parameter space dimensions.

ppl PIP Problem add constraint handle constraint

Updates the PIP Problem referenced by handle so that the feasible region is represented by the original
constraint system together with the constraint constraint.

ppl PIP Problem add constraints handle constraint system

Updates the PIP Problem referenced by handle so that the feasible region is represented by the original
constraint system together with all the constraints in constraint system.

ppl PIP Problem set big parameter dimension handle dimension

Sets the dimension for the big parameter to dimension.

7

ppl PIP Problem get big parameter dimension handle

Returns the dimension for the big parameter. Exception is thrown if no big parameter dimension has been
set.

ppl PIP Problem has big parameter dimension handle

Returns true if and only if the dimension for the big parameter has been set.

ppl PIP Problem is satisfiable handle

Returns true if the PIP Problem referenced by handle is satisfiable and false otherwise.

ppl PIP Problem solve handle

Solves the PIP problem referenced by handle and returns a status flag indicating the outcome of the op-
timization attempt: Optimized Pip Problem if the optimization attempt succeeds; Unfeasible ←↩

Pip Problem otherwise.

ppl PIP Problem solution handle

Solves the PIP problem referenced by handle and returns a handle to a PIP Tree representing a feasible
solution, if it exists and bottom otherwise.

ppl PIP Problem optimizing solution handle

Solves the PIP problem referenced by handle and returns a handle to a PIP Tree representing an optimizing←↩

solution, if it exists and bottom otherwise.

ppl PIP Problem OK handle

Returns true if the PIP Problem referenced by handle is well formed, i.e., if it satisfies all its implemen-
tation invariants and false, otherwise. Useful for debugging purposes.

ppl PIP Problem ascii dump handle

Returns a string containing an ASCII dump of the internal representation of the PIP Problem referenced
by handle. Useful for debugging purposes.

ppl PIP Tree Node swap handle 1 handle 2

Swaps the PIP tree node referenced by handle 1 with the one referenced by handle 2.

ppl PIP Tree Node OK handle

Returns true if the PIP tree node referenced by handle is well formed, i.e., if it satisfies all its implemen-
tation invariants and false, otherwise. Useful for debugging purposes.

ppl PIP Tree Node ascii dump handle

Returns a string containing an ASCII dump of the internal representation of the Pip tree node referenced
by handle. Useful for debugging purposes.

ppl PIP Tree Node constraints handle

Returns a list of the parameter constraints in the PIP tree node referenced by handle.

8

ppl PIP Tree Node artificials handle

Returns a list of the artificial parameters in the PIP tree node referenced by handle.

ppl PIP Tree Node is bottom handle

Returns true if and only if handle represents bottom.

ppl PIP Tree Node is decision handle

Returns true if and only if handle represents a decision node.

ppl PIP Tree Node is solution handle

Returns true if and only if handle represents a solution node.

ppl PIP Tree Node parametric values handle var

Returns a linear expression representing the values of problem variable var in the solution node repre-
sented by handle. The returned linear expression may involve problem parameters as well as artificial
parameters.

ppl PIP Tree Node true child handle var

Returns a handle to the child on the true branch of the PIP tree node represented by handle.

ppl PIP Tree Node false child handle var

Returns a handle to the child on the false branch of the PIP tree node represented by handle.

C Polyhedron Functions
Here we describe the main functions available for PPL objects defining convex and closed polyhedra.

ppl new C Polyhedron from space dimension space dimension universe or empty

Returns a handle to a C polyhedron P with space dimension dimensions; it is empty or the universe
polyhedron depending on whether universe or empty is empty or universe, respectively.

ppl new C Polyhedron from C Polyhedron handle

If handle refers to a C polyhedron P1, then the expression will returns a handle to a copy P2 of P1.

ppl new C Polyhedron from NNC Polyhedron handle

If handle refers to an NNC polyhedron P1, then the expression returns a handle to a copy P2 of P1.
When using ppl new C Polyhedron from NNC Polyhedron/2, care must be taken that the

source polyhedron referenced by handle is topologically closed.

ppl new C Polyhedron from constraints constraint system

Returns a handle to a C polyhedron P represented by constraint system.

9

ppl new C Polyhedron from generators generator system

Returns a handle to a C polyhedron P represented by generator system.

ppl Polyhedron swap handle 1 handle 2

Swaps the polyhedron P referenced by handle 1 with the polyhedron Q referenced by handle 2. The
polyhedra P and Q must have the same topology.

ppl Polyhedron space dimension handle

Returns the dimension of the vector space in which the polyhedron referenced by handle is embedded.

ppl Polyhedron affine dimension handle

Returns the actual dimension of the polyhedron referenced by handle.

ppl Polyhedron get constraints handle

Return a list of the constraints in the constraints system representing the polyhedron referenced by handle.

ppl Polyhedron get minimized constraints handle

Returns a minimized list of the constraints in the constraints system representing the polyhedron referenced
by handle.

ppl Polyhedron get generators handle

Returns a list of the generators in the generators system representing the polyhedron referenced by handle.

ppl Polyhedron get minimized generators handle

Returns a minimized list of the generators in the generators system representing the polyhedron referenced
by handle.

ppl Polyhedron relation with constraint handle constraint

Returns the list of relations the polyhedron referenced by handle has with constraint. The possible
relations and their meaning is given in Section Relation-With Operators of the main PPL user manual.

ppl Polyhedron relation with generator handle generator

Returns the list of relations the polyhedron referenced by handle has with generator. The possible
relations and their meaning is given in Section Relation-With Operators of the main PPL user manual.

ppl Polyhedron is empty handle

Returns true if the polyhedron referenced by handle is empty and false, otherwise.

ppl Polyhedron is universe handle

Returns true if the polyhedron referenced by handle is the universe and false, otherwise.

ppl Polyhedron is bounded handle

Returns true if the polyhedron referenced by handle is bounded and false, otherwise.

10

ppl Polyhedron contains integer point handle

Returns true if the polyhedron referenced by handle contains at least one integer point and false, other-
wise.

ppl Polyhedron bounds from above handle lin expr

Returns true if the polyhedron referenced by handle is bounded from above by lin expr and false,
otherwise.

ppl Polyhedron bounds from below handle lin expr

Returns true if the polyhedron referenced by handle is bounded from below by lin expr and false,
otherwise.

ppl Polyhedron maximize handle lin expr

Returns a record bool 1 ∗ coefficient 1 ∗ coefficient 2 ∗ bool 2 where: bool 1 is
true if the polyhedron P referenced by handle is not empty and lin expr is bounded from above in P
and false, otherwise. coefficient 1 is the numerator of the supremum value and coefficient 2
the denominator of the supremum value. If the supremum is also the maximum, bool 2 is true and false,
otherwise.

ppl Polyhedron maximize with point handle lin expr

Returns a record bool 1 ∗ coefficient 1 ∗ coefficient 2 ∗ bool 2 ∗ Point bool 1
is true if the polyhedron P referenced by handle is not empty and lin expr is bounded from above in
P and false, otherwise. coefficient 1 is the numerator of the supremum value and coefficient 2
the denominator of the supremum value. If the supremum is also the maximum, bool 2 is true and false,
otherwise. Point is the point or closure point where lin expr reaches the supremum.

ppl Polyhedron minimize handle lin expr

Returns a record bool 1 ∗ coefficient 1 ∗ coefficient 2 ∗ bool 2 bool 1 is true if the
polyhedron P referenced by handle is not empty and lin expr is bounded from below in P and
false, otherwise. coefficient 1 is the numerator of the infinum value and coefficient 2 the
denominator of the infinum value. If the infinum is also the minimum, bool 2 is true and false, otherwise.

ppl Polyhedron minimize with point handle lin expr

Returns a record bool 1 ∗ coefficient 1 ∗ coefficient 2 ∗ bool 2 bool 1 is true if the
polyhedron P referenced by handle is not empty and lin expr is bounded from below in P and
false, otherwise. coefficient 1 is the numerator of the infinum value and coefficient 2 the
denominator of the infinum value. If the infinum is also the minimum, bool 2 is true and false, otherwise.
Point is the point or closure point where lin expr reaches the infinum.

ppl Polyhedron is topologically closed handle

Returns true if the polyhedron referenced by handle is topologically closed and false, otherwise.

ppl Polyhedron contains Polyhedron handle 1 handle 2

Returns true if the polyhedron referenced by handle 2 is included in or equal to the polyhedron refer-
enced by handle 1 and false, otherwise.

11

ppl Polyhedron strictly contains Polyhedron handle 1 handle 2

Returns true if the polyhedron referenced by handle 2 is included in but not equal to the polyhedron
referenced by handle 1 and false, otherwise.

ppl Polyhedron is disjoint from Polyhedron handle 1 handle 2

Returns true if the polyhedron referenced by handle 1 is disjoint from the polyhedron referenced by
handle 2 and false, otherwise.

ppl Polyhedron equals Polyhedron handle 1 handle 2

Returns true if the polyhedron referenced by handle 1 is equal to the polyhedron referenced by handle←↩

2 and false, otherwise.

ppl Polyhedron OK handle

Returns true if the polyhedron referenced by handle is well formed, i.e., if it satisfies all its implementa-
tion invariants and false, otherwise. Useful for debugging purposes.

ppl Polyhedron add constraint handle constraint

Updates the polyhedron referenced by handle to one obtained by adding constraint to its constraint
system.

ppl Polyhedron add generator handle generator

Updates the polyhedron referenced by handle to one obtained by adding generator to its generator
system.

ppl Polyhedron add constraints handle constraint system

Updates the polyhedron referenced by handle to one obtained by adding to its constraint system the
constraints in constraint system.

ppl C Polyhedron add generators handle generator system

Updates the polyhedron referenced by handle to one obtained by adding to its generator system the
generators in generator system.

ppl Polyhedron intersection assign handle 1 handle 2

Assigns to the polyhedron referenced by handle 1 its intersection with the polyhedron referenced by
handle 2.

ppl Polyhedron poly hull assign handle 1 handle 2

Assigns to the polyhedron referenced by handle 1 its poly-hull with the polyhedron referenced by
handle 2.

ppl Polyhedron poly difference assign handle 1 handle 2

Assigns to the polyhedron referenced by handle 1 its poly-difference with the polyhedron referenced by
handle 2.

12

ppl Polyhedron affine image handle var lin expr coefficient

Transforms the polyhedron referenced by handle assigning the affine expression lin expr/coefficient
to var.

ppl Polyhedron affine preimage handle var lin expr coefficient

This is the inverse transformation to that for ppl affine image.

ppl Polyhedron bounded affine image handle var lin expr 1 lin expr 2 coefficient

Transforms the polyhedron referenced by handle assigning the image with respect to the transfer relation
lin expr 1/coefficient <= var <= lin expr 2/coefficient.

ppl Polyhedron generalized affine image handle var Relation Symbol lin expr
coefficient

Transforms the polyhedron referenced by handle assigning the generalized affine image with respect to
the transfer function var Relation Symbol lin expr/coefficient.

ppl Polyhedron generalized affine image lhs rhs handle lin expr 1 Relation←↩

Symbol lin expr 2

Transforms the polyhedron referenced by handle assigning the generalized affine image with respect to
the transfer function lin expr 1 Relation Symbol lin expr 2.

ppl Polyhedron time elapse assign handle 1 handle 2

Assigns to the polyhedron P referenced by handle 1 the time-elapse (P ↗ Q) with the polyhedron Q
referenced by handle 2.

ppl Polyhedron BHRZ03 widening assign handle 1 handle 2

If the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by handle 2, then
handle 1 will refer to the BHRZ03-widening of P1 with P2.

ppl Polyhedron BHRZ03 widening assign with tokens handle 1 handle 2 c unsigned←↩

1

It is assumed that the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by
handle 2; let P denote the BHRZ03-widening of P1 with P2, Assuming that the quantity t1 given by
c unsigned 1 is the number of tokens available, Then this function will return the number of tokens
remaining at the end of the operation.

ppl Polyhedron limited BHRZ03 extrapolation assign handle 1 handle 2 constraint←↩

system

If the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by handle 2, then
handle 1 will refer to the BHRZ03-extrapolation of P1 with P2 improved by enforcing the constraints
in constraint system.

13

ppl Polyhedron limited BHRZ03 extrapolation assign with tokens handle 1 handle←↩

2 constraint system c unsigned 1

It is assumed that the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by
handle 2; let P denote the BHRZ03-extrapolation of P1 with P2, improved by enforcing those con-
straints in constraint system.
Assuming that the quantity t1 given by c unsigned 1 is the number of tokens available, then this func-
tion will return the number of tokens t2 remaining at the end of the operation.

ppl Polyhedron bounded BHRZ03 extrapolation assign handle 1 handle 2 constraint←↩

system

If the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by handle 2, then
handle 1 will refer to the BHRZ03-extrapolation of P1 with P2 improved by enforcing the constraints
in constraint system together with all constraints of the form ±x ≤ r and ±x < r that are satisfied
by every point in P1.

ppl Polyhedron bounded BHRZ03 extrapolation assign with tokens handle 1 handle←↩

2 constraint system c unsigned 1

It is assumed that the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by
handle 2; letP denote the BHRZ03-extrapolation ofP1 withP2 improved by enforcing those constraints
in constraint system together with all constraints of the form ±x ≤ r and ±x < r that are satisfied
by every point in P1.
Assuming that the quantity t1 given by c unsigned 1 is the number of tokens available, this function
will return the number of tokens t2 remaining at the end of the operation.

ppl Polyhedron H79 widening assign handle 1 handle 2

If the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by handle 2, then
handle 1 will refer to the H79-widening of P1 with P2.

ppl Polyhedron H79 widening assign with tokens handle 1 handle 2 c unsigned←↩

1

It is assumed that the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced
by handle 2; let P denote the H79-widening of P1 with P2, Assuming that the quantity t1 given by
c unsigned 1 is the number of tokens available, Then this function will return the number of tokens
remaining at the end of the operation.

ppl Polyhedron limited H79 extrapolation assign handle 1 handle 2 constraint←↩

system

If the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by handle 2, then
handle 1 will refer to the H79-extrapolation of P1 with P2 improved by enforcing the constraints in
constraint system.

ppl Polyhedron limited H79 extrapolation assign with tokens handle 1 handle←↩

2 constraint system c unsigned 1

It is assumed that the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by
handle 2; let P denote the H79-extrapolation of P1 with P2, improved by enforcing those constraints in
constraint system.
Assuming that the quantity t1 given by c unsigned 1 is the number of tokens available, then this func-
tion will return the number of tokens t2 remaining at the end of the operation.

14

ppl Polyhedron bounded H79 extrapolation assign handle 1 handle 2 constraint←↩

system

If the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by handle 2, then
handle 1 will refer to the H79-extrapolation of P1 with P2 improved by enforcing the constraints in
constraint system together with all constraints of the form ±x ≤ r and ±x < r that are satisfied by
every point in P1.

ppl Polyhedron bounded H79 extrapolation assign with tokens handle 1 handle←↩

2 constraint system c unsigned 1

It is assumed that the polyhedron P1 referenced by handle 1 contains the polyhedron P2 referenced by
handle 2; let P denote the H79-extrapolation of P1 with P2, improved by enforcing those constraints in
constraint system together with all constraints of the form ±x ≤ r and ±x < r that are satisfied by
every point in P1.
Assuming that the quantity t1 given by c unsigned 1 is the number of tokens available, this function
will return the number of tokens t2 remaining at the end of the operation.

ppl Polyhedron topological closure assign handle

Assigns to the polyhedron referenced by handle its topological closure.

ppl Polyhedron add space dimensions and embed handle space dimension

Embeds the polyhedron referenced by handle in a space that is enlarged by space dimension dimen-
sions,

ppl Polyhedron concatenate assign handle 1 handle 2

Updates the polyhedron P1 referenced by handle 1 by first embedding P1 in a new space enlarged by the
space dimensions of the polyhedronP2 referenced by handle 2, and then adds to its system of constraints
a renamed-apart version of the constraints of P2.

ppl Polyhedron add space dimensions and project handle space dimension

Projects the polyhedron referenced by handle onto a space that is enlarged by space dimension
dimensions,

ppl Polyhedron remove space dimensions handle Int List

Removes the space dimensions given by the identifiers of the PPL variables in list Int List from the
polyhedron referenced by handle. The identifiers for the remaining PPL variables are renumbered so
that they are consecutive and the maximum index is less than the number of dimensions.

ppl Polyhedron remove higher space dimensions handle space dimension

Projects the polyhedron referenced to by handle onto the first space dimension dimensions.

ppl Polyhedron expand space dimension handle var space dimension

space dimension copies of the space dimension referenced by variable var are added to the polyhe-
dron referenced to by handle.

15

ppl Polyhedron fold space dimensions handle list of vars var

The space dimensions referenced by the PPL variables in list list of vars are folded into the dimension
referenced by var and removed. The result is undefined if list of vars does not have the properties
described in Section Folding Multiple Dimensions of the Vector Space into One Dimension of the main
PPL user manual.

ppl Polyhedron map space dimensions handle p func

Maps the space dimensions of the polyhedron referenced by handle using the partial function defined by
a list of pairs of integers p func. The result is undefined if p func does not encode a partial function
with the properties described in Section Mapping the Dimensions of the Vector Space of the main PPL user
manual.

ppl Polyhedron wrap assign handle list of vars width representation overflow
constraint system complexity threshold wrap indicator

Transforms the polyhedron referenced by handle by wrapping the dimensions given by list of ←↩

vars while respecting the specified width, representation and overflow behavior of all these
variables. The parameter constraint system represents the conditional or looping construct guard
with respect to which wrapping is performed. The non-negative integer complexity threshold and
Boolean wrap indicator allow control of the complexity/precision ratio; higher values for complexity←↩

threshold will lead to possibly greater precision while a true value for wrap indicator indicates
that the space dimensions should be wrapped individually. See Section Wrapping Operator for a more
detailed description of this operator.

ppl Polyhedron ascii dump handle

Returns a string containing an ASCII dump of the internal representation of the polyhedron referenced by
handle. Useful for debugging purposes.

OCamldoc Documentation
NOTE: the complete documentation for module Ppl ocaml, including all the types and functions that
were enabled at configuration time, is only available in the configuration dependent OCamldoc documen-
tation. The configuration independent OCamldoc documentation only contains those types and functions
that are always enabled, which are grouped into module Ppl ocaml globals. Also note that module
Ppl ocaml automatically includes module Ppl ocaml globals.

2 Module Ppl ocaml globals

exception PPL_arithmetic_overflow of string

exception PPL_timeout_exception

exception PPL_internal_error of string

exception PPL_unknown_standard_exception of string

exception PPL_unexpected_error of string

type degenerate_element =
| Universe
| Empty

type linear_expression =
| Variable of int

16

| Coefficient of Gmp.Z.t
| Unary_Plus of linear_expression
| Unary_Minus of linear_expression
| Plus of linear_expression * linear_expression
| Minus of linear_expression * linear_expression
| Times of Gmp.Z.t * linear_expression

type linear_constraint =
| Less_Than of linear_expression * linear_expression
| Less_Or_Equal of linear_expression * linear_expression
| Equal of linear_expression * linear_expression
| Greater_Than of linear_expression * linear_expression
| Greater_Or_Equal of linear_expression * linear_expression

type linear_generator =
| Line of linear_expression
| Ray of linear_expression
| Point of linear_expression * Gmp.Z.t
| Closure_Point of linear_expression * Gmp.Z.t

type linear_grid_generator =
| Grid_Line of linear_expression
| Grid_Parameter of linear_expression * Gmp.Z.t
| Grid_Point of linear_expression * Gmp.Z.t

type poly_gen_relation =
| Subsumes

type poly_con_relation =
| Is_Disjoint
| Strictly_Intersects
| Is_Included
| Saturates

type relation_with_congruence =
| Is_Disjoint
| Strictly_Intersects
| Is_Included

type linear_congruence = linear_expression * linear_expression *
Gmp.Z.t

type constraint_system = linear_constraint list

type generator_system = linear_generator list

type grid_generator_system = linear_grid_generator list

type congruence_system = linear_congruence list

type relation_symbol =
| Less_Than_RS
| Less_Or_Equal_RS
| Equal_RS
| Greater_Than_RS
| Greater_Or_Equal_RS

type bounded_integer_type_overflow =
| Overflow_Wraps
| Overflow_Undefined
| Overflow_Impossible

type bounded_integer_type_representation =
| Unsigned
| Signed_2_Complement

17

type bounded_integer_type_width =
| Bits_8
| Bits_16
| Bits_32
| Bits_64
| Bits_128

type complexity_class =
| Polynomial_Complexity
| Simplex_Complexity
| Any_Complexity

type optimization_mode =
| Minimization
| Maximization

type mip_problem_status =
| Unfeasible_Mip_Problem
| Unbounded_Mip_Problem
| Optimized_Mip_Problem

type control_parameter_name =
| Pricing

type control_parameter_value =
| Pricing_Steepest_Edge_Float
| Pricing_Steepest_Edge_Exact
| Pricing_Textbook

type pip_problem_status =
| Unfeasible_Pip_Problem
| Optimized_Pip_Problem

type pip_problem_control_parameter_name =
| Cutting_Strategy
| Pivot_Row_Strategy

type pip_problem_control_parameter_value =
| Cutting_Strategy_First
| Cutting_Strategy_Deepest
| Cutting_Strategy_All
| Pivot_Row_Strategy_First
| Pivot_Row_Strategy_Max_Column

val ppl_version_major : unit -> int

val ppl_version_minor : unit -> int

val ppl_version_revision : unit -> int

val ppl_version_beta : unit -> int

val ppl_version : unit -> string

val ppl_banner : unit -> string

val ppl_io_wrap_string : string -> int -> int -> int -> string

val ppl_max_space_dimension : unit -> int

val ppl_Coefficient_bits : unit -> int

val ppl_Coefficient_is_bounded : unit -> bool

val ppl_Coefficient_max : unit -> Gmp.Z.t

val ppl_Coefficient_min : unit -> Gmp.Z.t

val ppl_Linear_Expression_is_zero : linear_expression -> bool

val ppl_Linear_Expression_all_homogeneous_terms_are_zero :

18

linear_expression -> bool

val ppl_set_rounding_for_PPL : unit -> unit

val ppl_restore_pre_PPL_rounding : unit -> unit

val ppl_irrational_precision : unit -> int

val ppl_set_irrational_precision : int -> unit

val ppl_set_timeout : int -> unit

val ppl_reset_timeout : unit -> unit

val ppl_set_deterministic_timeout : int -> int -> unit

val ppl_reset_deterministic_timeout : unit -> unit

type mip_problem

val ppl_new_MIP_Problem_from_space_dimension : int -> mip_problem

val ppl_new_MIP_Problem :
int ->
constraint_system ->
linear_expression ->
optimization_mode -> mip_problem

val ppl_MIP_Problem_space_dimension : mip_problem -> int

val ppl_MIP_Problem_integer_space_dimensions : mip_problem -> int list

val ppl_MIP_Problem_constraints : mip_problem -> constraint_system

val ppl_MIP_Problem_add_space_dimensions_and_embed :
mip_problem -> int -> unit

val ppl_MIP_Problem_add_to_integer_space_dimensions :
mip_problem -> int list -> unit

val ppl_MIP_Problem_add_constraint : mip_problem -> linear_constraint -> unit

val ppl_MIP_Problem_add_constraints :
mip_problem -> constraint_system -> unit

val ppl_MIP_Problem_set_objective_function :
mip_problem -> linear_expression -> unit

val ppl_MIP_Problem_is_satisfiable : mip_problem -> bool

val ppl_MIP_Problem_solve : mip_problem -> mip_problem_status

val ppl_MIP_Problem_optimization_mode : mip_problem -> optimization_mode

val ppl_MIP_Problem_feasible_point : mip_problem -> linear_generator

val ppl_MIP_Problem_optimizing_point : mip_problem -> linear_generator

val ppl_MIP_Problem_objective_function : mip_problem -> linear_expression

val ppl_MIP_Problem_optimal_value : mip_problem -> Gmp.Z.t * Gmp.Z.t

val ppl_MIP_Problem_evaluate_objective_function :
mip_problem ->
linear_generator -> Gmp.Z.t * Gmp.Z.t

val ppl_MIP_Problem_OK : mip_problem -> bool

val ppl_MIP_Problem_clear : mip_problem -> unit

val ppl_MIP_Problem_set_optimization_mode :
mip_problem -> optimization_mode -> unit

val ppl_MIP_Problem_set_control_parameter :
mip_problem ->
control_parameter_value -> unit

val ppl_MIP_Problem_get_control_parameter :

19

mip_problem ->
control_parameter_name ->
control_parameter_value

val ppl_MIP_Problem_swap : mip_problem -> mip_problem -> unit

val ppl_MIP_Problem_ascii_dump : mip_problem -> string

type pip_problem

type pip_tree_node

type artificial_parameter = linear_expression * Gmp.Z.t

val ppl_new_PIP_Problem_from_space_dimension : int -> pip_problem

val ppl_new_PIP_Problem :
int ->
constraint_system ->
int list -> pip_problem

val ppl_PIP_Problem_space_dimension : pip_problem -> int

val ppl_PIP_Problem_parameter_space_dimensions : pip_problem -> int list

val ppl_PIP_Problem_constraints : pip_problem -> constraint_system

val ppl_PIP_Problem_add_space_dimensions_and_embed :
pip_problem -> int -> int -> unit

val ppl_PIP_Problem_add_to_parameter_space_dimensions :
pip_problem -> int list -> unit

val ppl_PIP_Problem_add_constraint : pip_problem -> linear_constraint -> unit

val ppl_PIP_Problem_add_constraints :
pip_problem -> constraint_system -> unit

val ppl_PIP_Problem_is_satisfiable : pip_problem -> bool

val ppl_PIP_Problem_solve : pip_problem -> pip_problem_status

val ppl_PIP_Problem_solution : pip_problem -> pip_tree_node

val ppl_PIP_Problem_optimizing_solution : pip_problem -> pip_tree_node

val ppl_PIP_Problem_get_big_parameter_dimension : pip_problem -> int

val ppl_PIP_Problem_set_big_parameter_dimension : pip_problem -> int -> unit

val ppl_PIP_Problem_has_big_parameter_dimension : pip_problem -> bool

val ppl_PIP_Problem_OK : pip_problem -> bool

val ppl_PIP_Problem_clear : pip_problem -> unit

val ppl_PIP_Problem_set_control_parameter :
pip_problem ->
pip_problem_control_parameter_value -> unit

val ppl_PIP_Problem_get_control_parameter :
pip_problem ->
pip_problem_control_parameter_name ->
pip_problem_control_parameter_value

val ppl_PIP_Problem_swap : pip_problem -> pip_problem -> unit

val ppl_PIP_Problem_ascii_dump : pip_problem -> string

val ppl_PIP_Tree_Node_constraints : pip_tree_node -> constraint_system

val ppl_PIP_Tree_Node_artificials :
pip_tree_node ->
artificial_parameter list

val ppl_PIP_Tree_Node_ascii_dump : pip_tree_node -> string

20

val ppl_PIP_Tree_Node_OK : pip_tree_node -> bool

val ppl_PIP_Tree_Node_is_bottom : pip_tree_node -> bool

val ppl_PIP_Tree_Node_is_solution : pip_tree_node -> bool

val ppl_PIP_Tree_Node_parametric_values :
pip_tree_node -> int -> linear_expression

val ppl_PIP_Tree_Node_is_decision : pip_tree_node -> bool

val ppl_PIP_Tree_Node_true_child : pip_tree_node -> pip_tree_node

val ppl_PIP_Tree_Node_false_child : pip_tree_node -> pip_tree_node

Compilation and Installation
When the Parma Polyhedra Library is configured, it tests for the existence of the OCaml system. If OCaml
is correctly installed in a standard location, things are arranged so that the OCaml interface is built and
installed.

3 GNU General Public License
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it

is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to
share and change the works. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change all versions of a program–to make sure it remains free software for all its
users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it
applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on
to the recipients the same freedoms that you received. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this
free software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

21

http://fsf.org/

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor

masks.
“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed

as “you”. “Licensees” and “recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright

permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.
To “propagate” a work means to do anything with it that, without permission, would make you directly

or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the
user that there is no warranty for the work (except to the extent that warranties are provided), that licensees
may convey the work under this License, and how to view a copy of this License. If the interface presents
a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that is
widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that
(a) is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to
generate, install, and (for an executable work) run the object code and to modify the work, including
scripts to control those activities. However, it does not include the work’s System Libraries, or general-
purpose tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition files
associated with source files for the work, and the source code for shared libraries and dynamically linked
subprograms that the work is specifically designed to require, such as by intimate data communication or
control flow between those subprograms and other parts of the work.

22

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevo-
cable provided the stated conditions are met. This License explicitly affirms your unlimited permission to
run the unmodified Program. The output from running a covered work is covered by this License only if
the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long
as your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works for you must do so exclusively on
your behalf, under your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Subli-
censing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply
to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

• b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to “keep
intact all notices”.

• c) You must license the entire work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any applicable section 7 additional

23

terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it does not invalidate such permission
if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however,
if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to
apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customar-
ily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the Cor-
responding Source. This alternative is allowed only occasionally and noncommercially, and only if
you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source may
be on a different server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the Corresponding
Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property
which is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved in favor of coverage. For a particular product received by a particular user, “normally

24

used” refers to a typical or common use of that class of product, regardless of the status of the particular
user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User Product
from a modified version of its Corresponding Source. The information must suffice to ensure that the
continued functioning of the modified object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a transaction in which the right of possession and use of
the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the
transaction is characterized), the Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply if neither you nor any third party
retains the ability to install modified object code on the User Product (for example, the work has been
installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the recipient,
or for the User Product in which it has been modified or installed. Access to a network may be denied when
the modification itself materially and adversely affects the operation of the network or violates the rules
and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal
in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that material
or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of
such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

25

All other non-permissive additional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by
this License along with a term that is a further restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that the further restriction
does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets
of one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

26

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent li-
cense for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowl-
edge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that country that you
have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party based
on the extent of your activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms
that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would be to refrain entirely from conveying
the Program.

27

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single com-
bined work, and to convey the resulting work. The terms of this License will continue to apply to the part
which is the covered work, but the special requirements of the GNU Affero General Public License, section
13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLIC←↩

ABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIE←↩

D WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF D←↩

ATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

28

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it starts in an

interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, your program’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Lesser General Public License in-
stead of this License. But first, please read http://www.gnu.org/philosophy/why-not-lgpl.←↩

html.

4 GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document

”free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with

29

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein.
The ”Document”, below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as ”you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo in-
put format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, ”Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

30

A section ”Entitled XYZ” means a named subunit of the Document whose title either is precisely X←↩

YZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as ”Acknowledgements”, ”Dedications”, ”←↩

Endorsements”, or ”History”.) To ”Preserve the Title” of such a section when you modify the Document
means that it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,

provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,

numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2

and 3 above, provided that you release the Modified Version under precisely this License, with the Modi-
fied Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

31

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled ”History” in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

• K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled ”Endorsements”. Such a section may not be included in the Modified
Version.

• N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title with any
Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms

defined in section 4 above for modified versions, provided that you include in the combination all of the

32

Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the various original docu-
ments, forming one section Entitled ”History”; likewise combine any sections Entitled ”Acknowledgements”,
and any sections Entitled ”Dedications”. You must delete all sections Entitled ”Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this Li-

cense, and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or

works, in or on a volume of a storage or distribution medium, is called an ”aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document

under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in addition
to the original versions of these Invariant Sections. You may include a translation of this License, and all
the license notices in the Document, and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of this License or a notice or disclaimer,
the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”, the re-
quirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for

under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation

License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version

33

http://www.gnu.org/copyleft/

number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ”with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these exam-
ples in parallel under your choice of free software license, such as the GNU General Public License, to
permit their use in free software.

5 Module Index

5.1 Modules
Here is a list of all modules:

OCaml Language Interface 34

6 Module Documentation

6.1 OCaml Language Interface
The Parma Polyhedra Library comes equipped with an interface for the OCaml language.

34

Index
artificial_parameter, 20

bounded_integer_type_overflow, 17
bounded_integer_type_representation,

17
bounded_integer_type_width, 18

complexity_class, 18
congruence_system, 17
constraint_system, 17
control_parameter_name, 18
control_parameter_value, 18

degenerate_element, 16

generator_system, 17
grid_generator_system, 17

linear_congruence, 17
linear_constraint, 17
linear_expression, 17
linear_generator, 17
linear_grid_generator, 17

mip_problem, 19
mip_problem_status, 18

optimization_mode, 18

pip_problem, 20
pip_problem_control_parameter_name, 18
pip_problem_control_parameter_value,

18
pip_problem_status, 18
pip_tree_node, 20
poly_con_relation, 17
poly_gen_relation, 17
PPL_arithmetic_overflow, 16
ppl_banner, 18
ppl_Coefficient_bits, 18
ppl_Coefficient_is_bounded, 18
ppl_Coefficient_max, 18
ppl_Coefficient_min, 18
PPL_internal_error, 16
ppl_io_wrap_string, 18
ppl_irrational_precision, 19
ppl_Linear_Expression_all_homogeneous_terms_are_zero,

19
ppl_Linear_Expression_is_zero, 18
ppl_max_space_dimension, 18
ppl_MIP_Problem_add_constraint, 19
ppl_MIP_Problem_add_constraints, 19

ppl_MIP_Problem_add_space_dimensions_and_embed,
19

ppl_MIP_Problem_add_to_integer_space_dimensions,
19

ppl_MIP_Problem_ascii_dump, 20
ppl_MIP_Problem_clear, 19
ppl_MIP_Problem_constraints, 19
ppl_MIP_Problem_evaluate_objective_function,

19
ppl_MIP_Problem_feasible_point, 19
ppl_MIP_Problem_get_control_parameter,

20
ppl_MIP_Problem_integer_space_dimensions,

19
ppl_MIP_Problem_is_satisfiable, 19
ppl_MIP_Problem_objective_function, 19
ppl_MIP_Problem_OK, 19
ppl_MIP_Problem_optimal_value, 19
ppl_MIP_Problem_optimization_mode, 19
ppl_MIP_Problem_optimizing_point, 19
ppl_MIP_Problem_set_control_parameter,

19
ppl_MIP_Problem_set_objective_function,

19
ppl_MIP_Problem_set_optimization_mode,

19
ppl_MIP_Problem_solve, 19
ppl_MIP_Problem_space_dimension, 19
ppl_MIP_Problem_swap, 20
ppl_new_MIP_Problem, 19
ppl_new_MIP_Problem_from_space_dimension,

19
ppl_new_PIP_Problem, 20
ppl_new_PIP_Problem_from_space_dimension,

20
Ppl_ocaml_globals, 16
ppl_PIP_Problem_add_constraint, 20
ppl_PIP_Problem_add_constraints, 20
ppl_PIP_Problem_add_space_dimensions_and_embed,

20
ppl_PIP_Problem_add_to_parameter_space_dimensions,

20
ppl_PIP_Problem_ascii_dump, 20
ppl_PIP_Problem_clear, 20
ppl_PIP_Problem_constraints, 20
ppl_PIP_Problem_get_big_parameter_dimension,

20
ppl_PIP_Problem_get_control_parameter,

20
ppl_PIP_Problem_has_big_parameter_dimension,

20

35

ppl_PIP_Problem_is_satisfiable, 20
ppl_PIP_Problem_OK, 20
ppl_PIP_Problem_optimizing_solution,

20
ppl_PIP_Problem_parameter_space_dimensions,

20
ppl_PIP_Problem_set_big_parameter_dimension,

20
ppl_PIP_Problem_set_control_parameter,

20
ppl_PIP_Problem_solution, 20
ppl_PIP_Problem_solve, 20
ppl_PIP_Problem_space_dimension, 20
ppl_PIP_Problem_swap, 20
ppl_PIP_Tree_Node_artificials, 20
ppl_PIP_Tree_Node_ascii_dump, 20
ppl_PIP_Tree_Node_constraints, 20
ppl_PIP_Tree_Node_false_child, 21
ppl_PIP_Tree_Node_is_bottom, 21
ppl_PIP_Tree_Node_is_decision, 21
ppl_PIP_Tree_Node_is_solution, 21
ppl_PIP_Tree_Node_OK, 21
ppl_PIP_Tree_Node_parametric_values,

21
ppl_PIP_Tree_Node_true_child, 21
ppl_reset_deterministic_timeout, 19
ppl_reset_timeout, 19
ppl_restore_pre_PPL_rounding, 19
ppl_set_deterministic_timeout, 19
ppl_set_irrational_precision, 19
ppl_set_rounding_for_PPL, 19
ppl_set_timeout, 19
PPL_timeout_exception, 16
PPL_unexpected_error, 16
PPL_unknown_standard_exception, 16
ppl_version, 18
ppl_version_beta, 18
ppl_version_major, 18
ppl_version_minor, 18
ppl_version_revision, 18

relation_symbol, 17
relation_with_congruence, 17

36

	OCaml Language Interface
	Module Ppl_ocaml_globals
	GNU General Public License
	GNU Free Documentation License
	Module Index
	Modules

	Module Documentation
	OCaml Language Interface

	Index

