

April 2009

Histogram
calculation in
OpenCL

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com

Document Change History

Version Date Responsible Reason for Change
1.0 06/15/2007 Victor Podlozhnyuk First draft of histogram256 whitepaper

1.1.0 11/06/2007 Victor Podlozhnyuk Merge histogram256 & histogram64 whitepapers

1.1.1 11/09/2007 Ignacio Castano Edit and proofread

2.3 04/13/2009 Victor Podlozhnyuk Adapted to OpenCL implementation

April 2009

 Abstract
Histograms are a commonly used analysis tool in image processing and data mining
applications. They show the frequency of occurrence of each data element.

Although trivial to compute on the CPU, histograms are traditionally quite difficult to
compute efficiently on the GPU. Previously proposed methods include using the occlusion
query mechanism (which requires a rendering pass for each histogram bucket), or sorting the
pixels of the image and then searching for the start of each bucket, both of which are quite
expensive

We can use OpenCL and the fast local memory to efficiently produce histograms, which can
then either be read back to the host or kept on the GPU for later use. The two OpenCL
SDK samples: oclHistogram64 and oclHistogram256 demonstrate different approaches
to efficient histogram computation on GPU using OpenCL..

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Introduction

Figure 1: An example of an image histogram

An image histogram shows the distribution of pixel intensities within an image.
Figure 1 is an example of an image histogram with amplitude (or color) on the horizontal
axis and pixel count on the vertical axis.

oclHistogram64 demonstrates a simple and high-performance implementation
of a 64-bin histogram. Due to the current hardware resource limitations, its approach cannot
be scaled to higher resolutions. 64-bin resolution is enough for many applications, but it’s
not well suited for many image processing methods, like, for example, histogram
equalization.

oclHistogram256 demonstrates an efficient implementation of a 256-bin
histogram, which makes it suitable for image processing applications that require higher
precision than 64 bins can provide.

April 2009

Overview
Calculating an image histogram on a sequential device with single thread of execution is
fairly easy:

for(unsigned int i = 0; i < BIN_COUNT; i++)
 result[i] = 0;

for(unsigned int i = 0; i < dataN; i++)
 result[data[i]]++;

 Listing 1. Histogram calculation on a single-threaded device. (pseudo-code)

Distribution of the computation process between multiple work-items is possible. It
amounts to three fundamental computation steps:

1) Map input data array to work-groups and work-items within a work-group. Generally,
the exact mapping pattern doesn’t matter for correctness. The only mandatory constraint is
that each input data element must be counted exactly once.

2) Each work-item sequentially processes input data elements it is mapped, building up
private work-item sub-histograms., which is largely identical to the pseudo-code in Listing 1.
It may also be possible for subgroups of work-items within a work-group to build up
common sub-histograms shared by these subgroups by using atomic operations (or
otherwise resolve potential access collisions inevitable in parallel processing), thus
considerably decreasing the size of required per work-group sub-histogram storage and the
amount of work for step 3. But resolving collisions between work-items within the
subgroups may vary from being expensive to impossible.

3) Finally all sub-histograms need to be merged into a single histogram. Each bin of the
resulting histogram is merely a sum of corresponding bin values of sub-histogram(s)
produced on previous stages of computation. If needed, this step is performed at multiple
levels, i.e. first-level merge step would combine work-item sub-histograms to form a work-
group sub-histogram; second-level merge step would combine work-group sub-histograms
to form the histogram of the entire input data array.

When adapting these steps to the particular family of GPUs some important features and
characteristics should be kept in mind.

 Local memory has approximately an order of magnitude higher bandwidth than
global memory (loading/storing from/to local memory is generally as fast as
reading/writing private register memory), tolerates many irregular access
patterns, but is limited in size: maximum local storage size for G8x / G9x /
G10x NVIDIA GPUs is 16KB.

 Only G10x NVIDIA GPUs provide built-in support for workgroup-wide atomic
operations in local memory. But even on earlier G8x / G9x NVIDIA GPUs
local-memory atomic operations can be emulated basing on the fundamental fact
that work-groups are executed as subgroups of logically coherent work-items,
called warps , though “consistency domain” of such manually-implemented
atomic operations will also be limited by warp size, which is 32 work-items on
G8x / G9x / G10x NVIDIA GPUs. But even with built-in support of atomic

April 2009

operations we may want to limit the amount of work-items sharing the same
sub-histogram, since the hardware still has to serialize colliding accesses, and the
degree of contention increases as the amount of work-items competing for
shared resource does.

 Depending on the utilization of local and private register memory, optimal work-
group size typically varies in the range of 64..256 work-items.

With the intention to minimize the potential contention degree and avoid the need in
expensive atomic operations (either built-in or emulated), we simply stick to “one sub-
histogram per work-item” tactics, which is implemented in oclHistogram64 OpenCL
SDK sample. Such strategy however introduces some serious limitations: 16 KB per average
192 work-items in a group amount to the maximum of ~85 bytes of local memory per work-
item. So this approach limits the histogram resolution to 64 bins on G8x / G9x / G10x
NVIDIA GPUs. From the implementation perspective, byte counters also introduce 255-
byte limit to the data size processed by single work-item, which must be taken into account
during data subdivision between the execution threads. Also note that 8- and 16-bit
loads/stores are not part of OpenCL 1.0 standart and currently available as
cl_khr_byte_addressable_store extension on G8x / G9x / G10x NVIDIA
GPUs.

oclHistogram256 OpenCL SDK sample raises the histogram resolution limit by utilizing
local-memory atomics and building up per-warp sub-histograms in local memory, greatly
relieving local memory size pressure: 192 work-items per work-group / 32 work-items per
warp * 256 counters per sub-histogram * 4 bytes per counter = 6KB per work-group.

Implementation details of these two approaches are described in the following sections.

Implementation of oclHistogram64
The per-work-item sub-histograms are stored in the local-memory l_Hist[] array, treated
as a 2D byte array of BIN_COUNT rows by WORKGROUP_SIZE columns, as shown in Figure
1. For best performance a bank-conflict-free access pattern needs to be ensured, if possible.

April 2009

BI
N

_C
O

U
N

T

Figure 1. l_Hist[] array layout for oclHistogram64.

For each work-item of a work-group with its own coordinate lPos and data value (which
may be the same for some or all other work-items in the work-group or not), local memory
bank index is equal to ((lPos + data * WORKGROUP_SIZE) / 4) % 16. (See
section 5.1.2.4 of CUDA Programming Guide.)

If WORKGROUP_SIZE is a multiple of 64, the expression reduces to (lPos / 4) % 16,
which is independent of data value. (lPos / 4) % 16 is equal to the [5: 2] bits of
lPos. A half-warp can be defined as a group of work-item in which all work-items have the
same upper bits [31 : 4] of get_local_id(0)

If lPos is simply set equal to get_local_id(0), all work-items within a half-warp will
access its own byte “lane”, but these lanes will map to only 4 banks, thus introducing 4-way
bank conflicts. However, swapping the [5 : 4] and [3 : 0] bit ranges in the bit representation
of get_local_id(0) will make bank index identical to lower four bits of get_local_id(0)
thus completely eliminating bank conflicts.

Since G8x / G9x / G10x NVIDIA GPUs most efficiently work with global-memory arrays
of 4, 8 and 16 bytes per element, input data is loaded from global memory as four-byte
words. Since local-memory histogram bin counters are only 8-bit, the data size processed by
single work-item is limited to 255 bytes or 63 full 4-byte words, and correspondingly data
processed by the entire work-group is limited to WORKGROUP_SIZE * 63 4-byte
words. (48,384 bytes for 192 work-items per work-group)

April 2009

Figure 2. Shifting start accumulation positions (blue) in order to avoid bank conflicts during
the merging stage in histogram64.

The second computational phase in the histogram64() kernel is merging of built per-
workitem sub-histograms into a per-workgroup sub-histogram. At this phase each bin
counter is assigned corresponding work-item, running through WORKGROUP_SIZE columns
of l_Hist[]. Similarly to the above, the local memory bank index is equal to ((accumPos
+ get_local_id(0) * WORKGROUP_SIZE) / 4) % 16. Still assuming
WORKGROUP_SIZE to be a multiple of 64, the expression reduces to (accumPos / 4)
% 16. If each thread within a half-warp starts accumulation at the same position [0 ..
WORKGROUP_SIZE), then we get 16-way bank conflicts. However, simply by shifting the
thread accumulation start position by 4 * (get_local_id(0) % 16) bytes relative to
the half-warp base, we can completely avoid bank conflicts at this stage as well. This is
shown in Figure 2.

After the workgroup-level merge step the produced subhistograms are written to global
memory and passed down to the dedicated mergeHistogram64() kernel finalizing the
merging. Although mergeKernel64()’s global memory loads are uncoalescable due to
large stride of BIN_COUNT words between consecutive work-items, its running time
nonetheless is only a fraction (< 5%) of the main histogram64() kernel, so may be largely
ignored.

Implementation of oclHistogram256
The per-warp sub-histograms are stored in the local-memory l_Hist[]array, treated as a
2D word array of WARP_COUNT rows by BIN_COUNT columns, as shown in Figure 3.

April 2009

W
A

R
P_

N

Figure 3. l_Hist[] layout for oclHistogram256.

As was already stated in the “Overview” section, since a sub-histogram is shared by more
than one work-item, local memory collisions are inevitable. Also since atomic local memory
operations are not natively supported on G8x / G9x NVIDIA GPUs, special care has to be
taken in order to resolve the collisions and produce correct results.

The heart of the 256-bin histogram implementation is addData256() function

void addData256(
volatile __local uint *l_WarpHist,
uint data,
uint workitemTag

){
 uint count;

 do{
 count = l_WarpHist[data] & 0x07FFFFFFU;
 count = workitemTag | (count + 1);
 l_WarpHist[data] = count;
 }while(l_WarpHist[data] != count);
}

Listing 3. Resolving intra-warp local memory collisions.

The l_WarpHist is a pointer to current warp sub-histogram.

The data argument is a value read from global memory lying in the [0, 255] range.
Essentially, at function entry each work-item of a warp has an outstanding increment
operation it has to commit. Obviously, the exact serialization patter in the case of collisions
doesn’t matter for correctness.

workitemTag is a unique id used by work-items to “sign” the data on write attempt and
then determine whether the outstanding increments have finally committed to local memory.
It is simply 5 lower bits of local ID (left-shifted by 27 bits to occupy 5 higher bits of count).

Let’s consider what happens in a single iteration of the do{…}while(…); loop in Listing
3: Each active (e.g. not masked out bwork-item of a warp loads a corresponding value from
the sub-histogram storage and produces a private tagged increment (in count variable),

April 2009

then stores it back, all in lock-step (e.g. logically coherently) by the definition of warp.
However, in the case when two or more work-items store to the same location, the hardware
performs local memory write combining, that effectively results in rejection of all but one
colliding stores.

The while(…) condition evaluated to FALSE by a work-item means that this work-item
has committed it’s increment and thus should exit the loop. At hardware level committed
work-items are masked out (e.g. have all state updates disabled) until all warp work-items exit
the loop, after which the warp continues its normal execution. Worst-case scenario for
addData256() is 32 iterations per warp, in the case when entire warp receives the same
value in the formal data parameter.

The second and the third computational steps of the discussed 256-bin histogram
implementation are largely indentical to those of oclHistogram64: merging of per-warp
sub-histograms into a per-workgroup subhistogram (second phase of histogram256()
kernel) and separate mergeHistogram256() kernel merging the per-workgroup sub-
histograms produced by histogram256() kernel. Similar to
mergeHistogram64(), mergeHistogram256() has uncoalescable global loads,
but its running time constitutes only a small fraction of the total running time.

Bibliography
1. Wolfram Mathworld. “Histogram” http://mathworld.wolfram.com/Histogram.html

April 2009

http://mathworld.wolfram.com/Histogram.html

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2009 NVIDIA Corporation. All rights reserved.

April 2009

	 Abstract
	 Introduction
	 Overview
	Implementation of oclHistogram64
	Implementation of oclHistogram256
	Bibliography
	
	

