

 June 14, 2010

Getting Started

OpenCL for
NVIDIA GPUs

Installation and Verification
on Linux

Getting Started with OpenCL on Linux

ii June 14, 2010

 June 14, 2010 iii

Table of Contents

Getting Started .. i

OpenCL for NVIDIA GPUs ... i

Installation and Verification on Linux .. i

Table of Contents .. iii

Chapter 1. Introduction .. 1

OpenCL Supercomputing with CUDA architecture GPUs ... 1

System Requirements .. 2

About This Document .. 2

Chapter 2. Installing OpenCL ... 3

Verify You Have a CUDA-Capable System ... 3

Verify You Have a Supported Version of Linux ... 4

Verify that gcc Is Installed ... 4

Download the NVIDIA Driver .. 5

Install the NVIDIA Driver ... 5

Installing the SDK.. 7

Verify the Installation .. 8

Compiling the Examples ... 8

Running the Binaries ... 8

Chapter 3. A simple OpenCL Example .. 11

Source Code Tips .. 13

What’s Next? ... 14

Getting Started with OpenCL on Linux

iv June 14, 2010

 June 14, 2010 1

Chapter 1.
Introduction

OpenCL Supercomputing with
CUDA architecture GPUs

NVIDIA® CUDATM is a general purpose parallel computing architecture introduced by
NVIDIA. It includes the CUDA Instruction Set Architecture (ISA) and the parallel compute
engine in the GPU. To program to the CUDA architecture, developers can choose between
C for CUDA, the original and most widely used language, and OpenCL, the new open
heterogeneous computing API proposed by Khronos.

The new OpenCL standard was developed with several design goals in mind:

� Provide a small set of extensions to standard programming languages, like C,
that enable a straightforward implementation of parallel algorithms. With
OpenCL for CUDA, programmers can focus on the task of parallelization of
the algorithms rather than spending time on their implementation.

� Support heterogeneous computation where applications use both the CPU and
GPU. Serial portions of applications are run on the CPU, and parallel portions
are offloaded to the GPU. OpenCL was designed to allow write once run
anywhere algorithms. The CPU and GPU are treated as separate devices that
have their own memory spaces. This configuration also allows simultaneous
computation on both the CPU and GPU without contention for memory
resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of
computing threads. Each core has shared resources, including registers and memory.
The on-chip shared memory allows parallel tasks running on these cores to share
data without sending it over the system memory bus.

This guide will show you how to install, check the correct operation of, and and
begin developing with, OpenCL for CUDA GPUs.

Getting Started with OpenCL on Linux

2 June 14, 2010

System Requirements

To use OpenGL on your system, you will need the following installed:

� NVIDIA GPU with CUDA architecture

� A supported version of Linux with a gcc compiler and toolchain

� NVIDIA OpenCL compatible drivers for CUDA GPUs

� NVIDIA GPU Computing SDK

About This Document

This document is intended for readers familiar with the Linux environment and the
compilation of OpenCL programs from the command line. You do not need previous
experience with OpenCL or experience with parallel computation. Note: This guide covers
installation only on systems running X Windows.

Note: Many commands in this document might require superuser privileges. On most distributions of
Linux, this will require you to log in as root. For systems that have enabled the sudo package,

use the sudo prefix for all necessary commands. We will no longer remark on the matter of user

privilege for the installation process except where critical to correct operation.

 June 14, 2010 3

Chapter 2.
Installing OpenCL

The installation of OpenCL on a system running the appropriate version of Linux consists
of these simple steps:

� Verify the system has a CUDA-capable GPU

� Verify the system has a supported version of Linux.

� Download and install the NVIDIA driver

� Download and install the NVIDIA GPU Computing SDK

� Build the SDK “super-makefile” (Makefile)

Test your installation by compiling and running one or more of the OpenCL sample
programs in the SDK to validate that the hardware and software are running correctly and
communicating with each other.

Verify You Have a

CUDA-Capable System

Many NVIDIA products today contain CUDA-enabled GPUs. These include:

� NVIDIA GeForce® 8, 9, and 200 series GPUs

� NVIDIA Tesla™ computing solutions

� Many of the NVIDIA Quadro® products

An up-to-date list of CUDA-enabled GPUs can be found on the NVIDIA CUDA Web site
at http://www.nvidia.com/object/cuda_learn_products.html.

To verify which video adapter your system uses, find the model number by going to your
distribution’s equivalent of System Properties, as shown in Figure 1. Or from the command
line, enter: lspci | grep -i nVidia. If you do not see any settings, update the PCI
hardware database that Linux maintains by entering update-pciids (generally found in
/sbin) at the command line and rerun the previous lspci command.

Getting Started with OpenCL on Linux

4 June 14, 2010

Verify You Have a Supported
Version of Linux

OpenCL requires an x86-based distribution of Linux. To determine which distribution and
release number you’re running, type the following at the command line:

uname –i && cat /etc/*release

You should see output similar to the following, modified for your particular system:

i386

Fedora release 8 (Werewolf)

The i386 line indicates you’re running on a 32-bit system. On 64-bit systems running in 64-
bit mode, this line will generally read: x86_64. The second line gives the version number of
the operating system.

As of OpenCL for CUDA v1.0, your Linux distribution must be a kernel 2.6 distribution of
one of the following versions:

� Red Hat Enterprise Linux 5.3

� Ubuntu 8.10

� Fedora 8

Note: Subsequent updates of OpenCL will support other versions of Linux, so check the

download page for the latest supported platforms.

Verify that gcc Is Installed

The gcc compiler and toolchain generally are installed as part of the Linux installation, and in
most cases the version of gcc installed with a supported version of Linux will work correctly.
Currently, OpenCL supports gcc version 3.4 as well as versions 4.x through 4.2. To verify
the version of gcc installed on your system, type the following on the command line:

gcc --version

If an error message appears, you need to install the “development tools” from your Linux
distribution or obtain a version of gcc and its accompanying toolchain from the Web.

Getting Started with OpenCL on Linux

 June 14, 2010 5

Download the NVIDIA Driver

Once you have verified that you have a supported NVIDIA processor and a supported
version of Linux, you need to make sure you have the version of the NVIDIA display driver
indicated in the OpenCL Release Notes. This driver MUST be installed for the updated
SDK and OpenCL applications to operate properly.

On many distributions, the driver release number can be found in the graphical interface
menus under Applications→System Tools→NVIDIA X Server Settings. Or, from the
command line, run:

/usr/bin/nvidia-settings.

Figure 1 shows the resulting screen. The “NVIDIA Driver Version” is listed in the right top
portion of the dialog box under “System Information”, underneath the “Operating System”
information

Install the NVIDIA Driver

After you’ve downloaded the NVIDIA driver and software, you will need to install the
driver. If you’re in a GUI environment, exit the GUI (ctl-alt-backspace). At the command
line, turn off X Windows via /sbin/init 3. Then run the driver package from the
command line as a superuser. Restart the GUI environment (startx or init 5, or the
equivalent command on your system). In your System Properties (or equivalent), verify that
the driver is installed as shown in Figure 1.

Getting Started with OpenCL on Linux

6 June 14, 2010

Figure 1. The NVIDIA Driver Information Window

More information on installing the driver is available at:

 http://us.download.nvidia.com/XFree86/Linux-x86/1.0-9755/README/index.html.

Note: New versions of OpenCL can require later versions of Linux and of the NVIDIA driver,

so always verify that you are running the right release for the version of OpenCL you are

using.

Getting Started with OpenCL on Linux

 June 14, 2010 7

Installing the SDK

The following section describes the installation and configuration of the NVIDIA GPU
Computing SDK, which you downloaded in a previous step.

Before installing the SDK, read the Release Notes, as those notes provide important details
on installation and software functionality.

Then, follow these two steps for a successful installation:

Install the SDK by running the installer for your OS in the shell:

sh gpucomputingsdk_1_1_beta_linux.run

(Note: .run file name may differ slightly)

Throughout this document the assumed SDK installation is in the default path:

$(HOME)/NVIDIA_GPU_Computing_SDK/.

Best practice for a multiuser Linux system is to also install a version as root that is accessible
to users on a read-only basis. This pristine copy can then be copied to a user directory in the
event users corrupt their copy of the source code.

Getting Started with OpenCL on Linux

8 June 14, 2010

Verify the Installation

Before proceeding, it’s important to verify that the OpenCL programs can find and
communicate correctly with the CUDA-enabled hardware. To do this, you will need to
compile and run some of the included sample programs.

Compiling the Examples

NVIDIA includes sample OpenCL programs in source form in the SDK. You should
compile them all by changing to NVIDIA_GPU_Computing_SDK/OpenCL/ in the user’s home
directory and typing make. The resulting binaries will be installed under the home directory
in NVIDIA_GPU_Computing_SDK/OpenCL/bin/linux/release.

Running the Binaries

After compilation, go to NVIDIA_GPU_Computing_SDK/OpenCL/bin/linux/release in
the user’s home directory and run oclDeviceQuery. If OpenCL is installed and configured
correctly, the output for oclDeviceQuery should look similar to Figure 2.

The exact appearance and the output lines might be different on your system. The important
outcomes are that OpenCL v 1.0 was detected (the first highlighted line) at least one
OpenCL capable device was found, that matches the one on your system (the second
highlighted line), and that the test passed (the final highlighted line).

On systems where SELinux is enabled, you might need to temporarily disable this security
feature to run oclDeviceQuery. To do this, type:

#setenforce 0

from the command line as the superuser.

Note: On multiuser systems, access to NVIDIA devices must be enabled for remote users. To do

this, enable read-write privileges for all users on /dev/nv* devices.

Getting Started with OpenCL on Linux

 June 14, 2010 9

Figure 2. Valid Results from Sample oclDeviceQuery Program

Getting Started with OpenCL on Linux

10 June 14, 2010

Running the oclBandwidthTest program ensures that the system and the OpenCL device
are able to communicate correctly. Its output is shown in Figure 3.

Figure 3. Valid Results from Sample oclBandwidthTest Program

Note that the measurements for your OpenCL device description will vary from system to
system. The important point is that you obtain measurements, and that the second-to-last
line (highlighted) confirms that all necessary tests passed.

Should the tests not pass, make sure you have an NVIDIA GPU on your system that
supports CUDA and make sure it is properly installed.

If you run into difficulties with the link step (such as libraries not being found), consult the
Linux Release Notes found in the doc folder in the SDK directory.

 June 14, 2010 11

Chapter 3.
A simple OpenCL Example

To build the sample application, save the following source code as vectoradd.cpp. Then in the same directory type:

> g++ -I ~/NVIDIA_GPU_Computing_SDK/OpenCL/common/inc/ -lOpenCL ↵

vectoradd.cpp –o vectoradd

> ./vectoradd

//***

// Demo OpenCL application to compute a simple vector addition

// computation between 2 arrays on the GPU

// **

#include <stdio.h>

#include <stdlib.h>

#include <CL/cl.h>

// OpenCL source code

const char* OpenCLSource[] = {

"__kernel void VectorAdd(__global int* c, __global int* a,__global int* b)",

 "{",

 " // Index of the elements to add \n",

 " unsigned int n = get_global_id(0);",

 " // Sum the n’th element of vectors a and b and store in c \n",

 " c[n] = a[n] + b[n];",

 "}"

};

// Some interesting data for the vectors

int InitialData1[20] = {37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17};

int InitialData2[20] = {35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15};

// Number of elements in the vectors to be added

#define SIZE 2048

// Main function

// ***

int main(int argc, char **argv)

{

 // Two integer source vectors in Host memory

 int HostVector1[SIZE], HostVector2[SIZE];

 // Initialize with some interesting repeating data

 for(int c = 0; c < SIZE; c++)

 {

HostVector1[c] = InitialData1[c%20];

HostVector2[c] = InitialData2[c%20];

 }

 //Get an OpenCL platform

 cl_platform_id cpPlatform;

 clGetPlatformIDs(1, &cpPlatform, NULL);

Getting Started with OpenCL on Linux

12 June 14, 2010

 // Get a GPU device

 cl_device_id cdDevice;

 clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);

 // Create a context to run OpenCL on our CUDA-enabled NVIDIA GPU

 cl_context GPUContext = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

 // Create a command-queue on the GPU device

 cl_command_queue cqCommandQueue = clCreateCommandQueue(GPUContext, cdDevice, 0, NULL);

 // Allocate GPU memory for source vectors AND initialize from CPU memory

 cl_mem GPUVector1 = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY |

 CL_MEM_COPY_HOST_PTR, sizeof(int) * SIZE, HostVector1, NULL);

 cl_mem GPUVector2 = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY |

 CL_MEM_COPY_HOST_PTR, sizeof(int) * SIZE, HostVector2, NULL);

 // Allocate output memory on GPU

 cl_mem GPUOutputVector = clCreateBuffer(GPUContext, CL_MEM_WRITE_ONLY,

 sizeof(int) * SIZE, NULL, NULL);

 // Create OpenCL program with source code

 cl_program OpenCLProgram = clCreateProgramWithSource(GPUContext, 7,

 OpenCLSource, NULL, NULL);

 // Build the program (OpenCL JIT compilation)

 clBuildProgram(OpenCLProgram, 0, NULL, NULL, NULL, NULL);

 // Create a handle to the compiled OpenCL function (Kernel)

 cl_kernel OpenCLVectorAdd = clCreateKernel(OpenCLProgram, "VectorAdd", NULL);

 // In the next step we associate the GPU memory with the Kernel arguments

 clSetKernelArg(OpenCLVectorAdd, 0, sizeof(cl_mem),(void*)&GPUOutputVector);

 clSetKernelArg(OpenCLVectorAdd, 1, sizeof(cl_mem), (void*)&GPUVector1);

 clSetKernelArg(OpenCLVectorAdd, 2, sizeof(cl_mem), (void*)&GPUVector2);

 // Launch the Kernel on the GPU

 size_t WorkSize[1] = {SIZE}; // one dimensional Range

 clEnqueueNDRangeKernel(cqCommandQueue, OpenCLVectorAdd, 1, NULL,

 WorkSize, NULL, 0, NULL, NULL);

 // Copy the output in GPU memory back to CPU memory

 int HostOutputVector[SIZE];

 clEnqueueReadBuffer(cqCommandQueue, GPUOutputVector, CL_TRUE, 0,

 SIZE * sizeof(int), HostOutputVector, 0, NULL, NULL);

 // Cleanup

 clReleaseKernel(OpenCLVectorAdd);

 clReleaseProgram(OpenCLProgram);

 clReleaseCommandQueue(cqCommandQueue);

 clReleaseContext(GPUContext);

 clReleaseMemObject(GPUVector1);

 clReleaseMemObject(GPUVector2);

 clReleaseMemObject(GPUOutputVector);

 // Print out the results

 for (int Rows = 0; Rows < (SIZE/20); Rows++, printf("\t")){

 for(int c = 0; c <20; c++){

 printf("%c",(char)HostOutputVector[Rows * 20 + c]);

 }

 }

 printf("\n\nThe End\n\n");

 return 0;

}

Getting Started with OpenCL on Windows

 June 14, 2010 13

Chapter 4.
SDK Programming Notes

Source Code Tips

� The source code presented in the OpenCL SDK is intended to facilitate learning the OpenCL API as
applicable to the heterogeneous, massively parallel SPMD programming model appropriate to NVIDIA
GPU’s.

� Some application samples in the SDK are very simple and focused upon a particular functional aspect of the
OpenCL API. Such examples are an excellent starting point for developers just beginning OpenCL
programming and/or GPU programming and include: oclDeviceQuery, oclBandwidthTest,
oclVectorAdd and oclDotProduct.

� Some application samples in the SDK are more complex, incorporating graphics output, user input and a
wider variety of OpenCL and GPU capabilities. These samples, such as oclBoxFilter,
oclRecursiveGaussian, oclVolumeRender and oclNbody are more representative of full applications, but
beginners may want to skip them until the simpler examples have been fully understood.

� The source code presented in the OpenCL SDK is intended to facilitate learning the OpenCL API as
applicable to the heterogeneous, massively parallel SPMD programming model appropriate to NVIDIA
GPU’s.

� Some application samples in the SDK are very simple and focused upon a particular functional aspect of the
OpenCL API. Such examples are an excellent starting point for developers just beginning OpenCL
programming and/or GPU programming and include: oclDeviceQuery, oclBandwidthTest,
oclVectorAdd and oclDotProduct.

� Some application samples in the SDK are more complex, incorporating graphics output, user input and a
wider variety of OpenCL and GPU capabilities. These samples, such as oclBoxFilter, oclMedianFilter,
oclVolumeRender, oclParticles and oclNbody are more representative of full applications, but beginners
may want to skip them until the simpler examples have been fully understood.

� An effort has been made to present useful and relevant application samples from a variety of domains. But
the source code presented has been tailored for approachability and is generally not intended to represent the
best production code techniques per se.

� For the sake of clarity and emphasis of the most unique aspects of OpenCL and GPU programming,
code that might be important for production use has been abbreviated or omitted in some places. For
example, teardown/cleanup and error handling code has been intentionally de-emphasized in some
portions of the SDK.

� Many of the SDK applications present status and timing information useful for a overall perspective of
program structure, flow, and a basic awareness of the time required for execution of significant functions.
SDK examples have generally been simplified for instructional purposes, however, and are generally not
highly optimized, except where clearly marked. Advanced optimization techniques are beyond the scope
of this SDK. Any timing information presented by the samples is not intended for such usage as
standardized benchmarking.

� For convenience, most of the applications additionally log all the console information to a log file in the same
directory as the .exe and named after the name of the sample application. For example, the log file for
oclVectorAdd.exe is oclVectorAdd.txt.

Getting Started with OpenCL on Linux

14 June 14, 2010

� The oclUtils library (oclUtils.cpp, oclUtils.h, oclUtils.a) contains simple helper functions and a common
header used throughout the OpenCL SDK.

� These utility functions are host/CPU based C++ code that are mostly specific to the OpenCL API, but
are not part of the OpenCL API.

� This utility library is used in the OpenCL SDK for convenience, but is not needed for developers to write
their own OpenCL applications for NVIDIA GPU’s.

� The shrUtils library (shrUtils.cpp, shrUtils.h and shrUtils.a and other platform & configuration specific
binaries) contains simple helper functions and a common header used in many places throughout the
NVIDIA GPU Computing SDK (including some samples in the OpenCL SDK).

� These utility functions consist of host/CPU based C++ code generic to all of the NVIDIA GPU
Computing SDK API’s.

� This utility library is used in the NVIDIA GPU Computing SDK for convenience, but is not needed for
developers to write their own applications for NVIDIA GPU’s.

What’s Next?

Now that you have CUDA-capable hardware and the OpenCL software installed, you can examine
and enjoy the numerous included programs. To begin using OpenCL to accelerate the performance
of your own applications, consult the OpenCL Programming Guide and the OpenCL API Specifications,
located in /NVIDIA_GPU_Computing_SDK/OpenCL/doc.

For tech support on programming questions, consult and participate in the bulletin board at
http://forums.nvidia.com/index.php?showforum=134.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any patent
or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, GeForce, NVIDIA Quadro, and Tesla are trademarks or registered
trademarks of NVIDIA Corporation. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2010 NVIDIA Corporation. All rights reserved.

