>

VDA

Getting Started

OpenCL for
NVIDIA GPUs

Installation and Verification
on Linux

June 14, 2010

Getting Started with OpenCL on Linux

il | June 14, 2010

Table of Contents

Getting Started......cc.cuiimciiimmsii s ————————— i
OpenCL for NVIDIA GPUScciicuuieatasimasmmasmisssmsssmsssmassmsssssssnsssnsssnsssssssnsssnsssnssssnsssnsssnnsnnns i
Installation and Verification on LiNUX....ccuumimesiimmmmssimmmmsssimmmmsssmss s snssssa i
Table of CONtENtSciieeciiiiieeiirres i annna iii
Chapter 1. INtroduction.......cccirreeurmemmmnesimmesmmssssmssssmnsssrnssssrssssrnssssnnsssrnssssnnnssssnnsssnnssenns 1
OpenCL Supercomputing with CUDA architecture GPUScccoiiiiiiiiiiiiiiin v 1
SYStEM REQUIFEMENES ..evuiiiiieee i ieerre e e e e e s s e e s s rre s s e e e s s e rrn s s e rre e e eranneeenennnsns 2
ADOUL ThiS DOCUMENTeeeeiiiiinininnnie e s nn s s s s nnnnnnnnnnns 2
Chapter 2. Installing OPenCL ...c.cicirteummemmemnsmmasmmesmnsssnssmsssmsssnsssnsssnsssnsssnsssnsssnsssnnnssnnssnns 3
Verify You Have a CUDA-Capable SyStemcouuiiiiiiiiiiiiiiiie ettt enas s 3
Verify You Have a Supported Version of LINUX.........cccuuruiiiiniinsiernnnissnn s sseerssnnn s s essseesnnnnnnns 4
Verify that gec IS INSTAllEdcovvuniiiiiie e 4
Download the NVIDIA DEIVEL.....cccooieiriiin i 5
INStall the NVIDIA DFIVELceeeeieieeeeeee ettt a e e e e e a e n e n e aeaeaeeeas 5
INSAlliNG the SDK... .o 7
Verify the INStallationiiiiiii i 8
Compiling the EXAmMPIES.......uiiiiiiiiiiiiiie e e e e e s s e e a e e e e e s e e raa e e eees 8
RUNNING the BINAKIES ... e e e e e e e e e 8
Chapter 3. A simple OpenCL EXamplecicoireummesmmesmnsmnsmmsssmassmsssnsssnsssssssnsssnsssnsssnsssnnnss 11
SOUMCE COUER TIPS truniieruueieiiuusseittuaesstrre s s e e s e ser s e e aa s e eas e s e eaa s e eeaa e s e e eeaaa e e e ra e e snannnsns 13
WHA's NEXE?....eeiiiiiiiiiiiieiiiiii et eeeeeeeeee e e e ettt e et e eeeeeeeeeeeeeeeeeeaeeeeeeeeesesssesssssneeeeeeeennenenennnennnnnens 14

June 14, 2010 | iii

Getting Started with OpenCL on Linux

iv | June 14, 2010

Chapter 1.
Introduction

OpenCL Supercomputing with
CUDA architecture GPUs

NVIDIA® CUDA™ is a general purpose parallel computing architecture introduced by
NVIDIA. It includes the CUDA Instruction Set Architecture (ISA) and the parallel compute
engine in the GPU. To program to the CUDA architecture, developers can choose between
C for CUDA, the original and most widely used language, and OpenCL, the new open
heterogeneous computing API proposed by Khronos.

The new OpenCL standard was developed with several design goals in mind:

O Provide a small set of extensions to standard programming languages, like C,
that enable a straightforward implementation of parallel algorithms. With
OpenCL for CUDA, programmers can focus on the task of parallelization of
the algorithms rather than spending time on their implementation.

O Support heterogeneous computation where applications use both the CPU and
GPU. Serial portions of applications are run on the CPU, and parallel portions
are offloaded to the GPU. OpenCL was designed to allow write once run
anywhere algorithms. The CPU and GPU are treated as separate devices that
have their own memory spaces. This configuration also allows simultaneous
computation on both the CPU and GPU without contention for memory
resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of
computing threads. Each core has shared resources, including registers and memory.
The on-chip shared memory allows parallel tasks running on these cores to share
data without sending it over the system memory bus.

This guide will show you how to install, check the correct operation of, and and
begin developing with, OpenCL for CUDA GPUs.

June 14, 2010

1

2

Getting Started with OpenCL on Linux

System Requirements

To use OpenGL on your system, you will need the following installed:

a

a
a
a

NVIDIA GPU with CUDA architecture

A supported version of Linux with a gcc compiler and toolchain
NVIDIA OpenCL compatible drivers for CUDA GPUs
NVIDIA GPU Computing SDK

About This Document

This document is intended for readers familiar with the Linux environment and the
compilation of OpenCL programs from the command line. You do not need previous
experience with OpenCL or experience with parallel computation. Note: This guide covers
installation only on systems running X Windows.

Note: Many commands in this document might require superuser privileges. On most distributions of
Linux, this will require you to log in as root. For systems that have enabled the sudo package,
use the sudo prefix for all necessary commands. We will no longer remark on the matter of user
privilege for the installation process except where critical to correct operation.

June 14, 2010

Chapter 2.
Installing OpenCL

The installation of OpenCL on a system running the appropriate version of Linux consists
of these simple steps:

Q Verity the system has a CUDA-capable GPU

Q Verify the system has a supported version of Linux.

a Download and install the NVIDIA driver

a Download and install the NVIDIA GPU Computing SDK
Q Build the SDK “super-makefile” (Makefile)

Test your installation by compiling and running one or more of the OpenCL sample
programs in the SDK to validate that the hardware and software are running correctly and
communicating with each other.

Verify You Have a
CUDA-Capable System

Many NVIDIA products today contain CUDA-enabled GPUs. These include:

a NVIDIA GeForce® 8, 9, and 200 series GPUs
a NVIDIA Tesla™ computing solutions
Q Many of the NVIDIA Quadro® products

An up-to-date list of CUDA-enabled GPUs can be found on the NVIDIA CUDA Web site
at http://www.nvidia.com/object/cuda learn products.html.

To verify which video adapter your system uses, find the model number by going to your
distribution’s equivalent of System Properties, as shown in Figure 1. Or from the command
line, enter: 1spci | grep -i nVidia. If you do not see any settings, update the PCI
hardware database that Linux maintains by entering update-peiids (generally found in
/sbin) at the command line and rerun the previous 1spei command.

June 14, 2010

3

4

Getting Started with OpenCL on Linux

Verify You Have a Supported
Version of Linux

OpenCL requires an x86-based distribution of Linux. To determine which distribution and
release number you’re running, type the following at the command line:

uname -i && cat /etc/*release

You should see output similar to the following, modified for your particular system:
1386
Fedora release 8 (Werewolf)

The 1386 line indicates you’re running on a 32-bit system. On 64-bit systems running in 64-
bit mode, this line will generally read: x86_64. The second line gives the version number of
the operating system.

As of OpenCL for CUDA v1.0, your Linux distribution must be a kernel 2.6 distribution of
one of the following versions:

Q Red Hat Enterprise Linux 5.3
Q Ubuntu 8.10
a Fedora 8

Note: Subsequent updates of OpenCL will support other versions of Linux, so check the
download page for the latest supported platforms.

Verify that gcc Is Installed

The gce compiler and toolchain generally are installed as part of the Linux installation, and in
most cases the version of gec installed with a supported version of Linux will work correctly.
Currently, OpenCL supports gce version 3.4 as well as versions 4.x through 4.2. To verify
the version of gcc installed on your system, type the following on the command line:

gce —-version

If an error message appears, you need to install the “development tools” from your Linux
distribution or obtain a version of gcc and its accompanying toolchain from the Web.

June 14, 2010

Getting Started with OpenCL on Linux

Download the NVIDIA Driver

Once you have verified that you have a supported NVIDIA processor and a supported
version of Linux, you need to make sure you have the version of the NVIDIA display driver
indicated in the OpenCL Release Notes. This driver MUST be installed for the updated
SDK and OpenCL applications to operate propetly.

On many distributions, the driver release number can be found in the graphical interface
menus under Applications—System Tools—NVIDIA X Server Settings. Or, from the
command line, run:

/usr/bin/nvidia-settings.

Figure 1 shows the resulting screen. The “NVIDIA Driver Version” is listed in the right top
portion of the dialog box under “System Information”, underneath the “Operating System”
information

Install the NVIDIA Driver

After you’ve downloaded the NVIDIA driver and software, you will need to install the
driver. If you’re in a GUI environment, exit the GUI (ctl-alt-backspace). At the command
line, turn off X Windows via /sbin/init 3. Then run the driver package from the
command line as a superuser. Restart the GUI environment (startx or init 5, or the
equivalent command on your system). In your System Properties (or equivalent), verify that
the driver is installed as shown in Figure 1.

June 14,2010 | 5

6

Getting Started with OpenCL on Linux

(i
2
<
2
(-]

Searvar Settings

i
I 0]
e R —

Operating System: Linux-x86
NWIDIA Driver Version: 190.29

ce (o F i

PIvidig- a2 LUy s DT atnari

W
lﬁ

I
o
i

Figure 1. The NVIDIA Driver Information Window

More information on installing the driver is available at:

http:

us.download.nvidia.com/XFree86/Linux-x86/1.0-9755/README/index.html.

Note: New versions of OpenCL can require later versions of Linux and of the NVIDIA driver,

so always verify that you are running the right release for the version of OpenCL you are
using.

June 14, 2010

Getting Started with OpenCL on Linux

Installing the SDK

The following section describes the installation and configuration of the NVIDIA GPU
Computing SDK, which you downloaded in a previous step.

Before installing the SDK, read the Release Notes, as those notes provide important details
on installation and software functionality.

Then, follow these two steps for a successful installation:

Install the SDK by running the installer for your OS in the shell:
sh gpucomputingsdk_1_1_beta_linux.run

(Note: .run file name may differ slightly)

Throughout this document the assumed SDK installation is in the default path:

$ (HOME) /NVIDIA_GPU_Computing_ SDK/.

Best practice for a multiuser Linux system is to also install a version as root that is accessible
to users on a read-only basis. This pristine copy can then be copied to a user directory in the
event users corrupt their copy of the source code.

June 14,2010 | 7

8

Getting Started with OpenCL on Linux

Verify the Installation

Before proceeding, it’s important to verify that the OpenCL programs can find and
communicate correctly with the CUDA-enabled hardware. To do this, you will need to
compile and run some of the included sample programs.

Compiling the Examples

NVIDIA includes sample OpenCL programs in source form in the SDK. You should
compile them all by changing to NVIDIA_GPU_Computing_SDK/OpenCL/ in the user’s home
directory and typing make. The resulting binaries will be installed under the home directory
in NVIDIA_ GPU_Computing SDK/OpenCL/bin/linux/release.

Running the Binaries

After compilation, go to NVIDIA_GPU_Computing SDK/OpenCL/bin/linux/release in
the user’s home directory and run oclDeviceQuery. If OpenCL is installed and configured
correctly, the output for oclDeviceQuery should look similar to Figure 2.

The exact appearance and the output lines might be different on your system. The important
outcomes are that OpenCL v 1.0 was detected (the first highlighted line) at least one
OpenCL capable device was found, that matches the one on your system (the second
highlighted line), and that the test passed (the final highlighted line).

On systems where SELinux is enabled, you might need to temporarily disable this security
feature to run oclDeviceQuery. To do this, type:

#setenforce 0

from the command line as the superuser.

Note: On multiuser systems, access to NVIDIA devices must be enabled for remote users. To do
this, enable read-write privileges for all users on /dev/nv* devices.

June 14, 2010

Getting Started with OpenCL on Linux

oclDeviceQuery (=] =]x]
Fle Edit Wiew Terminal Tabs Help
OpenCL SW Info: (=]
CL_PLATFORM_VERSION: OpencL 1.0
UpentL SDK version: FLatelime: 200M/08/16 L2:12:38 § FChange: 4511761 §
OpenCL Device Info:
of devices supporting OpenCL - 2:
CL_DEVICE VENDOR: NVIDIA Corporation
CL_DEVICE_NAME: Tesla ClOEO
CL_DRLVER VERSLUM: 190,23
CL_DEVICE TYPE: CL_DEVICE TYPE_GFU
CL_DEVICE MAX_COMPJTE_LNITS: 30
CL_DEVICE_MAX_WORK_ITEM_SIZES: 512 / 512 / 64
CL_DEVICE MAX_WORK_GROUP_SIZE: 512
CL_DEVICE MAX_CLOC< FREQUENCY: 1266 Mkz
CL_DEVICE_IMAGE_SUPPORT: 1
CL_DCVICC_GLODAL_MZM SIZL: 4095 MCyte
CL_DEVICE LOCAL MEY SIZE: 16 KByte
CL_DEVICE_MAX_CONSTANT BUFFER SIZE: 64 KByte I
CL_DEVICE QUELE_PROPERTIES: CL_QUELE_OUT OF ORDER _EXEC_MODE_ENABLE
CL_DEVICE_QUEUE_PRIPERTIES: CL_QUELE_PROFILING_EMAELE
CL_DEVICE_EXTENSIONS:
cl_khr_byte_addressable_store
cl_nv_compiler_cptions
cl_khr_local_int32 base_stomics
cl_khr_global_irt32_base_atomics
cl_khr_global_irt3z_extended_atom.cs
cl_khr_local_int32_extended_atomics
1 _NRVTCR_VFNDOR: NVTDTA Corporation
CL_DEVICE_NAME: GeForce 8800 GTX
CL_DRIVER VERSION: 190,22
CL_DEVICE TYPE: CL_DEVICE TYPE_GFU
CL_DEVICE_MAX_COMPJTE_UNITS: 16
CL_DEVICE MAX_WORK_ITEM SIZES: 512 / 512 / 64
CL_DEVICE MAX_WORK_GROUF_SIZE: 512
CL DEVICE MAX CLOC< FREQUENCY: 1350 Mz
CL_DEVICE_IMAGE_SUPPORT: 1
€1 _NFVTCF_GI ORAT _M=M_ST7F: 767 MRyte E
CL_DEVICE LOCAL MEY SIZE: 16 KByte
CL_DEVICE_MAX_COMSTANT BUFFER_SIZE: 64 KBytc
CL_DEVICE QUELE_PROPERTIES: CL_QUELE_OUT OF ORDER _EXEC_MODE_ENABLE
CL_DEVICE_QUEUE_FROPERTIES: CL_QUELE_PROFILING_ENABLE
CL_DEVICE_EXTENSIONS:
cl_khr_byte_addressable_store
cl_nv_compiler_cptions
System Info:
Local Time/Date = 12:05:12, 08/18/2009
CPU Mame: Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz
of CPU processors: 2
Lznux version 2.6,27-9-generic (buildd@rothera) (gcc version 4.3.2 (Ubunzu 4.3,
2-Zubuntull)) #1 SM* Thu Nov 20 21:57:00 UTC 2008
TEST PASSED. ..
Press ENTER to exit... H
___ [~

Figure 2.

Valid Results from Sample oclDeviceQuery Program

June 14, 2010

9

Getting Started with OpenCL on Linux

Running the oc1BandwidthTest program ensures that the system and the OpenCL device
are able to communicate correctly. Its output is shown in Figure 3.

[F=l arlBandwidthTact eIl sl
—_— T T T T T T —
Sle Er vdain Toaoeeiss! T=l o e e
Zii o WV AsTminGi Agias =
Sl amdudpth oot Lms et ne .
socldandwidthiest Starting.

juick Mede

Hoct to Device Bandvidth for 2ageable memory, direct access
Trensfer Sice (Byles) Bancwldih (MBs/s)

3004430 2h2n. 4

Quick Mede

wac

Device Zo liost Dandwidth fer “ageable memory, direct access

Tromotar C12a (Butach Darmev d+h (WD oy
Trenster Size (Bytes) Bancwidth{MB/s}
33554432 24420

Quick Mode

Mouirs o Dorico Tandwidlh

Deyice .o Device Zandwidlh

Trensfer Size (Bytes) Bancwidth(MB/3)
amcs a4 [——
33554432 735805

Figure 3. Valid Results from Sample oc1lBandwidthTest Program

Note that the measurements for your OpenCL device description will vary from system to
system. The important point is that you obtain measurements, and that the second-to-last
line (highlighted) confirms that all necessaty tests passed.

Should the tests not pass, make sute you have an NVIDIA GPU on your system that
supports CUDA and make sure it is propetly installed.

If you run into difficulties with the link step (such as libraries not being found), consult the
Linux Release Notes found in the doc folder in the SDK directory.

10/ June 14, 2010

Chapter 3.
A simple OpenCL Example

To build the sample application, save the following source code as vectoradd. cpp. Then in the same directory type:

> g++ -I ~/NVIDIA GPU_Computing_ SDK/OpenCL/common/inc/ -1OpenCL .l
vectoradd.cpp -o vectoradd

> ./vectoradd

//***

// Demo OpenCL application to compute a simple vector addition

// computation between 2 arrays on the GPU

// R I i I I S R I S i I I S I I I A S S R I R S b b b I i
#include <stdio.h>

#finclude <stdlib.h>

#include <CL/cl.h>

// OpenCL source code
const char* OpenCLSource[] = {
" __kernel void VectorAdd(__global int* ¢, __global int* a,__global int* b)",
ll{ll,
" // Index of the elements to add \n",
" unsigned int n = get_global_id(0);",
" // Sum the n’th element of vectors a and b and store in c \n",
" c[n] = aln] + bln];",
"}"
}i

// Some interesting data for the vectors
int InitialDatal[20] {37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17};
int InitialData2[20] = {35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15};

// Number of elements in the vectors to be added
#define SIZE 2048

// Main function
// Ak h kA hhhhkhkhkhhhk A rhkhhkhk ko hk kA dhkhhkhk ko hk kA ko ko hkhk ko hkhk Ak rhhkhkhkrhkhkhkhkrhhkhkhkhhhkkxx K%k
int main(int argc, char **argv)
{
// Two integer source vectors in Host memory
int HostVectorl[SIZE], HostVector2[SIZE];

// Initialize with some interesting repeating data
for(int ¢ = 0; ¢ < SIZE; c++)
{
HostVectorl[c] = InitialDatal[c%20];
HostVector2|[c] InitialData2[c%20];

}
//Get an OpenCL platform

cl_platform_id cpPlatform;
clGetPlatformIDs (1, &cpPlatform, NULL);

June 14,2010 | 11

Getting Started with OpenCL on Linux

// Get a GPU device
cl_device_id cdDevice;
clGetDevicelIDs (cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);

// Create a context to run OpenCL on our CUDA-enabled NVIDIA GPU
cl_context GPUContext = clCreateContextFromType (0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// Create a command-queue on the GPU device
cl_command_gueue cgCommandQueue = clCreateCommandQueue (GPUContext, cdDevice, 0, NULL);

// Allocate GPU memory for source vectors AND initialize from CPU memory

cl_mem GPUVectorl = clCreateBuffer (GPUContext, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(int) * SIZE, HostVectorl, NULL);

cl_mem GPUVector2 = clCreateBuffer (GPUContext, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(int) * SIZE, HostVector2, NULL);

// Allocate output memory on GPU
cl_mem GPUOutputVector = clCreateBuffer (GPUContext, CL_MEM WRITE_ONLY,
sizeof (int) * SIZE, NULL, NULL);

// Create OpenCL program with source code
cl_program OpenCLProgram = clCreateProgramWithSource (GPUContext, 7,
OpenCLSource, NULL, NULL);

// Build the program (OpenCL JIT compilation)
clBuildProgram(OpenCLProgram, 0, NULL, NULL, NULL, NULL);

// Create a handle to the compiled OpenCL function (Kernel)
cl_kernel OpenCLVectorAdd = clCreateKernel (OpenCLProgram, "VectorAdd", NULL);

// In the next step we associate the GPU memory with the Kernel arguments
clSetKernelArg (OpenCLVectorAdd, 0, sizeof(cl_mem), (void*)&GPUOutputVector);
clSetKernelArg(OpenCLVectorAdd, 1, sizeof(cl_mem), (void*)&GPUVectorl);
clSetKernelArg (OpenCLVectorAdd, 2, sizeof(cl_mem), (void*)&GPUVector?2);

// Launch the Kernel on the GPU

size_t WorkSize[l] = {SIZE}; // one dimensional Range

clEnqueueNDRangeKernel (cqgCommandQueue, OpenCLVectorAdd, 1, NULL,
WorkSize, NULL, 0, NULL, NULL);

// Copy the output in GPU memory back to CPU memory
int HostOutputVector [SIZE];
clEnqueueReadBuffer (cgCommandQueue, GPUOutputVector, CL_TRUE, O,
SIZE * sizeof(int), HostOutputVector, 0, NULL, NULL);

// Cleanup

clReleaseKernel (OpenCLVectorAdd) ;
clReleaseProgram(OpenCLProgram) ;
clReleaseCommandQueue (cgCommandQueue) ;
clReleaseContext (GPUContext) ;
clReleaseMemObject (GPUVectorl) ;
clReleaseMemObject (GPUVector?2) ;
clReleaseMemObject (GPUOutputVector) ;

// Print out the results

for (int Rows = 0; Rows < (SIZE/20); Rows++, printf ("\t")) {
for(int ¢ = 0; c <20; c++){

printf ("%c", (char)HostOutputVector [Rows * 20 + c]);

}

}

printf ("\n\nThe End\n\n");

return 0;

12| June 14, 2010

Getting Started with OpenCL on Windows

Chapter 4.
SDK Programming Notes

Source Code Tips

The source code presented in the OpenCL SDK is intended to facilitate learning the OpenCL API as
applicable to the heterogeneous, massively parallel SPMD programming model appropriate to NVIDIA
GPU’s.

Some application samples in the SDK are very simple and focused upon a particular functional aspect of the
OpenCL APIL. Such examples are an excellent starting point for developers just beginning OpenCL
programming and/or GPU programming and include: oclDeviceQuety, oclBandwidthTest,
oclVectorAdd and oclDotProduct.

Some application samples in the SDK are more complex, incorporating graphics output, user input and a
wider variety of OpenCL and GPU capabilities. These samples, such as oclBoxFilter,
oclRecursiveGaussian, oclVolumeRender and ocINbody are more representative of full applications, but
beginners may want to skip them until the simpler examples have been fully understood.

The source code presented in the OpenCL SDK is intended to facilitate learning the OpenCL API as
applicable to the heterogeneous, massively parallel SPMD programming model appropriate to NVIDIA
GPU’s.

Some application samples in the SDK are very simple and focused upon a particular functional aspect of the
OpenCL APIL. Such examples are an excellent starting point for developers just beginning OpenCL
programming and/or GPU programming and include: oclDeviceQuety, oclBandwidthTest,
oclVectorAdd and oclDotProduct.

Some application samples in the SDK are more complex, incorporating graphics output, user input and a
wider variety of OpenCL and GPU capabilities. These samples, such as oclBoxFilter, oclMedianFilter,
oclVolumeRender, oclParticles and ocINbody are more representative of full applications, but beginners
may want to skip them until the simpler examples have been fully understood.

An effort has been made to present useful and relevant application samples from a variety of domains. But
the source code presented has been tailored for approachability and is generally not intended to represent the
best production code techniques per se.

For the sake of clarity and emphasis of the most unique aspects of OpenCL and GPU programming,
code that might be important for production use has been abbreviated or omitted in some places. For
example, teardown/cleanup and error handling code has been intentionally de-emphasized in some
portions of the SDK.

Many of the SDK applications present status and timing information useful for a overall perspective of
program structure, flow, and a basic awareness of the time required for execution of significant functions.
SDK examples have generally been simplified for instructional purposes, however, and are generally not
highly optimized, except where clearly marked. Advanced optimization techniques are beyond the scope
of this SDK. Any timing information presented by the samples is not intended for such usage as
standardized benchmarking.

For convenience, most of the applications additionally log all the console information to a log file in the same
directory as the .exe and named after the name of the sample application. For example, the log file for
oclVectorAdd.exe is oclVectorAdd.txt.

June 14,2010 | 13

Getting Started with OpenCL on Linux

O The oclUtils library (oclUtils.cpp, oclUtils.h, oclUtils.a) contains simple helper functions and a common
header used throughout the OpenCL SDK.

0 These utility functions are host/CPU based C++ code that are mostly specific to the OpenCL API, but
are not part of the OpenCL APL

0O This utility library is used in the OpenCL SDK for convenience, but is not needed for developers to write
their own OpenCL applications for NVIDIA GPU’s.

0O The shrUtils library (shrUtils.cpp, shrUtils.h and shrUtils.a and other platform & configuration specific
binaries) contains simple helper functions and a common header used in many places throughout the
NVIDIA GPU Computing SDK (including some samples in the OpenCL SDK).

0 These utlity functions consist of host/CPU based C++ code generic to all of the NVIDIA GPU
Computing SDK API’s.

O This utility library is used in the NVIDIA GPU Computing SDK for convenience, but is not needed for
developers to write their own applications for NVIDIA GPU’s.

What's Next?

Now that you have CUDA-capable hardware and the OpenCL software installed, you can examine
and enjoy the numerous included programs. To begin using OpenCL to accelerate the performance
of your own applications, consult the OpenCL Programming Guide and the OpenCL. API Specifications,
located in /NVIDIA_GPU_Computing_SDK/OpenCL/doc.

For tech support on programming questions, consult and participate in the bulletin board at

http://forums.nvidia.com/index.php?showforum=134.

14| June 14, 2010

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any patent
or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, GeForce, NVIDIA Quadro, and Tesla are trademarks or registered
trademarks of NVIDIA Corporation. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright
© 2010 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2701 San Tomas Expressway | Santa Clara, CA 95050 | www.nvidia.com nVI DIA®

